Measuring the Predictability of Recommender Systems using Structural Complexity Metrics
- URL: http://arxiv.org/abs/2404.08829v1
- Date: Fri, 12 Apr 2024 22:00:27 GMT
- Title: Measuring the Predictability of Recommender Systems using Structural Complexity Metrics
- Authors: Alfonso Valderrama, Andrés Abeliuk,
- Abstract summary: This study introduces data-driven metrics to measure the predictability of RS based on the structural complexity of the user-item rating matrix.
A low predictability score indicates complex and unpredictable user-item interactions, while a high predictability score reveals less complex patterns with predictive potential.
- Score: 0.6429591199690016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommender systems (RS) are central to the filtering and curation of online content. These algorithms predict user ratings for unseen items based on past preferences. Despite their importance, the innate predictability of RS has received limited attention. This study introduces data-driven metrics to measure the predictability of RS based on the structural complexity of the user-item rating matrix. A low predictability score indicates complex and unpredictable user-item interactions, while a high predictability score reveals less complex patterns with predictive potential. We propose two strategies that use singular value decomposition (SVD) and matrix factorization (MF) to measure structural complexity. By perturbing the data and evaluating the prediction of the perturbed version, we explore the structural consistency indicated by the SVD singular vectors. The assumption is that a random perturbation of highly structured data does not change its structure. Empirical results show a high correlation between our metrics and the accuracy of the best-performing prediction algorithms on real data sets.
Related papers
- Enhancing the conformal predictability of context-aware recommendation systems by using Deep Autoencoders [4.3012765978447565]
We introduce a framework that combines neural contextual matrix factorization with autoencoders to predict user ratings for items.
We conduct experiments on various real-world datasets and compare the results against state-of-the-art approaches.
arXiv Detail & Related papers (2024-11-30T18:24:42Z) - Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
This paper introduces a novel structured unsupervised ensemble learning model (SUEL)
It exploits the dependency between a set of predictors with continuous predictive scores, rank the predictors without labeled data and combine them to an ensembled score with weights.
The efficacy of the proposed methods is rigorously assessed through both simulation studies and real-world application of risk genes discovery.
arXiv Detail & Related papers (2024-08-14T20:14:42Z) - RHiOTS: A Framework for Evaluating Hierarchical Time Series Forecasting Algorithms [0.393259574660092]
RHiOTS is designed to assess the robustness of hierarchical time series forecasting models and algorithms on real-world datasets.
RHiOTS incorporates an innovative visualization component, turning complex, multidimensional robustness evaluation results into intuitive, easily interpretable visuals.
Our findings show that traditional statistical methods are more robust than state-of-the-art deep learning algorithms, except when the transformation effect is highly disruptive.
arXiv Detail & Related papers (2024-08-06T18:52:15Z) - Structured Prediction in Online Learning [66.36004256710824]
We study a theoretical and algorithmic framework for structured prediction in the online learning setting.
We show that our algorithm is a generalisation of optimal algorithms from the supervised learning setting.
We consider a second algorithm designed especially for non-stationary data distributions, including adversarial data.
arXiv Detail & Related papers (2024-06-18T07:45:02Z) - CARE: Large Precision Matrix Estimation for Compositional Data [9.440956168571617]
We introduce a precise specification of the compositional precision matrix and relate it to its basis counterpart.
By exploiting this connection, we propose a composition regularized estimation (CARE) method for estimating the sparse basis precision matrix.
Our theory reveals an intriguing trade-off between identification and estimation, thereby highlighting the blessing of dimensionality in compositional data analysis.
arXiv Detail & Related papers (2023-09-13T14:20:22Z) - Accelerated structured matrix factorization [0.0]
Matrix factorization exploits the idea that, in complex high-dimensional data, the actual signal typically lies in lower-dimensional structures.
By exploiting Bayesian shrinkage priors, we devise a computationally convenient approach for high-dimensional matrix factorization.
The dependence between row and column entities is modeled by inducing flexible sparse patterns within factors.
arXiv Detail & Related papers (2022-12-13T11:35:01Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
We show that even in arguably the simplest setting, estimation under ignorability assumptions can be misleading.
We consider two popular machine learning benchmark datasets for evaluation of heterogeneous treatment effect estimators.
We highlight that the inherent characteristics of the benchmark datasets favor some algorithms over others.
arXiv Detail & Related papers (2021-07-28T13:21:27Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
We propose a self-supervised representation learning method for sequence data, based on the intuition that useful representations of sequence data should exhibit a simple structure in the latent space.
We encourage this latent structure by maximizing an estimate of predictive information of latent feature sequences, which is the mutual information between past and future windows at each time step.
We demonstrate that our method recovers the latent space of noisy dynamical systems, extracts predictive features for forecasting tasks, and improves automatic speech recognition when used to pretrain the encoder on large amounts of unlabeled data.
arXiv Detail & Related papers (2020-10-07T03:34:01Z) - Learning Output Embeddings in Structured Prediction [73.99064151691597]
A powerful and flexible approach to structured prediction consists in embedding the structured objects to be predicted into a feature space of possibly infinite dimension.
A prediction in the original space is computed by solving a pre-image problem.
In this work, we propose to jointly learn a finite approximation of the output embedding and the regression function into the new feature space.
arXiv Detail & Related papers (2020-07-29T09:32:53Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
Clinical researchers often select among and evaluate risk prediction models.
Standard metrics calculated from retrospective data are only related to model utility under certain assumptions.
When predictions are delivered repeatedly throughout time, the relationship between standard metrics and utility is further complicated.
arXiv Detail & Related papers (2020-06-02T16:26:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.