論文の概要: Enhancing path-integral approximation for non-linear diffusion with neural network
- arxiv url: http://arxiv.org/abs/2404.08903v1
- Date: Sat, 13 Apr 2024 05:15:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 18:13:13.336694
- Title: Enhancing path-integral approximation for non-linear diffusion with neural network
- Title(参考訳): ニューラルネットワークを用いた非線形拡散に対する経路積分近似の強化
- Authors: Anna Knezevic,
- Abstract要約: 本稿では,ブラック・カラシンスキーモデル構造における固定所得楽器の価格設定に関する既存のソリューションを強化することを目的とする。
この手法は、拡張射影地平線を越えた複数のキャリブレーションに対して優れた結果を得ることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enhancing the existing solution for pricing of fixed income instruments within Black-Karasinski model structure, with neural network at various parameterisation points to demonstrate that the method is able to achieve superior outcomes for multiple calibrations across extended projection horizons.
- Abstract(参考訳): ブラック・カラシンスキーモデル構造における固定所得楽器の価格設定のための既存のソリューションを、様々なパラメータ化ポイントでニューラルネットワークで強化し、拡張射影地平線をまたいだ複数のキャリブレーションに対して優れた結果が得られることを示す。
関連論文リスト
- Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation [57.10353686244835]
我々は、回転、スケーリング、せん断、翻訳を含む入力画像の幾何学的変換に対するニューラルネットワークの検証の問題に対処する。
提案手法は, 分枝・分枝リプシッツと組み合わせたサンプリングおよび線形近似を用いて, 画素値に対する楽音線形制約を求める。
提案手法では,既存の手法よりも最大32%の検証ケースが解決されている。
論文 参考訳(メタデータ) (2024-08-23T15:02:09Z) - Structured Partial Stochasticity in Bayesian Neural Networks [0.0]
本稿では,ニューロン置換対称性を除去する重みの決定論的サブセットを選択するための構造的手法を提案する。
大幅に単純化された後続分布により,既存の近似推論方式の性能は大幅に向上した。
論文 参考訳(メタデータ) (2024-05-27T21:40:31Z) - Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
本稿では,ニューラルネットワークによる安定確率分布の伝播手法を提案する。
提案手法は局所線形化に基づいており,ReLU非線型性に対する全変動距離の近似値として最適であることを示す。
論文 参考訳(メタデータ) (2024-02-13T09:40:19Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
変分推論において、ベイズモデルの利点は、真の後続分布を正確に捉えることに依存する。
複雑な多重モーダルおよび相関後部を近似するのに適した暗黙分布を特定するニューラルサンプリング手法を提案する。
提案手法では,ニューラルネットワークを局所的に線形化することにより,暗黙分布を用いた近似推論の新たなバウンダリを導入する。
論文 参考訳(メタデータ) (2023-10-10T14:06:56Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Prior Density Learning in Variational Bayesian Phylogenetic Parameters
Inference [1.03590082373586]
本稿では,勾配に基づく手法とニューラルネットワークに基づくパラメータ化を用いて,それらのパラメータを学習することで,先行密度の剛性を緩和する手法を提案する。
実験の結果, 分岐長と進化モデルパラメータを推定する上で, 提案手法は強力であることが示唆された。
論文 参考訳(メタデータ) (2023-02-06T01:29:15Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
本研究では,2層のシグモダルアクティベーションを持つディープ2ニューラルネットワークを用いて,ボールインジケータ関数を効率よく学習できることを示す。
これは最適化に基づく最初の分離結果であり、より強力なアーキテクチャの近似の利点は、実際に確実に現れる。
論文 参考訳(メタデータ) (2021-12-04T18:07:47Z) - An artificial neural network approach to bifurcating phenomena in
computational fluid dynamics [0.0]
非線形パラメタライズドPDEの非滑らか解集合を扱うPOD-NN手法について論じる。
臨界点進化の非侵襲的回復のための縮小多様体ベースの分岐図を提案する。
論文 参考訳(メタデータ) (2021-09-22T14:42:36Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
ディープアンサンブルはベイズ辺化を近似する有効なメカニズムであることを示す。
また,アトラクションの流域内での辺縁化により,予測分布をさらに改善する関連手法を提案する。
論文 参考訳(メタデータ) (2020-02-20T15:13:27Z) - The k-tied Normal Distribution: A Compact Parameterization of Gaussian
Mean Field Posteriors in Bayesian Neural Networks [46.677567663908185]
変分ベイズ推論は、ベイズニューラルネットワークの重み付けを近似する一般的な手法である。
最近の研究は、性能向上を期待して、近似後部のよりリッチなパラメータ化を探求している。
これらの変動パラメータを低ランク因子化に分解することにより、モデルの性能を低下させることなく変動近似をよりコンパクトにすることができる。
論文 参考訳(メタデータ) (2020-02-07T07:33:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。