Developing An Attention-Based Ensemble Learning Framework for Financial Portfolio Optimisation
- URL: http://arxiv.org/abs/2404.08935v1
- Date: Sat, 13 Apr 2024 09:10:05 GMT
- Title: Developing An Attention-Based Ensemble Learning Framework for Financial Portfolio Optimisation
- Authors: Zhenglong Li, Vincent Tam,
- Abstract summary: We propose a multi-agent and self-adaptive portfolio optimisation framework integrated with attention mechanisms and time series, namely the MASAAT.
By reconstructing the tokens of financial data in a sequence, the attention-based cross-sectional analysis module and temporal analysis module of each agent can effectively capture the correlations between assets and the dependencies between time points.
The experimental results clearly demonstrate that the MASAAT framework achieves impressive enhancement when compared with many well-known portfolio optimsation approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, deep or reinforcement learning approaches have been applied to optimise investment portfolios through learning the spatial and temporal information under the dynamic financial market. Yet in most cases, the existing approaches may produce biased trading signals based on the conventional price data due to a lot of market noises, which possibly fails to balance the investment returns and risks. Accordingly, a multi-agent and self-adaptive portfolio optimisation framework integrated with attention mechanisms and time series, namely the MASAAT, is proposed in this work in which multiple trading agents are created to observe and analyse the price series and directional change data that recognises the significant changes of asset prices at different levels of granularity for enhancing the signal-to-noise ratio of price series. Afterwards, by reconstructing the tokens of financial data in a sequence, the attention-based cross-sectional analysis module and temporal analysis module of each agent can effectively capture the correlations between assets and the dependencies between time points. Besides, a portfolio generator is integrated into the proposed framework to fuse the spatial-temporal information and then summarise the portfolios suggested by all trading agents to produce a newly ensemble portfolio for reducing biased trading actions and balancing the overall returns and risks. The experimental results clearly demonstrate that the MASAAT framework achieves impressive enhancement when compared with many well-known portfolio optimsation approaches on three challenging data sets of DJIA, S&P 500 and CSI 300. More importantly, our proposal has potential strengths in many possible applications for future study.
Related papers
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - Temporal Relational Reasoning of Large Language Models for Detecting Stock Portfolio Crashes [46.259921167692895]
We propose an algorithmic framework named Temporal Reasoning (TRR)
TRR seeks to emulate the spectrum of human cognitive capabilities used for complex problem-solving.
We show that TRR is able to outperform state-of-the-art solutions on detecting stock portfolio crashes.
arXiv Detail & Related papers (2024-10-07T11:15:52Z) - Automate Strategy Finding with LLM in Quant investment [4.46212317245124]
We propose a novel framework for quantitative stock investment in portfolio management and alpha mining.
This paper proposes a framework where large language models (LLMs) mine alpha factors from multimodal financial data.
Experiments on the Chinese stock markets demonstrate that this framework significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-09-10T07:42:28Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
We study the use of deep reinforcement learning for responsible portfolio optimization by incorporating ESG states and objectives.
Our results show that deep reinforcement learning policies can provide competitive performance against mean-variance approaches for responsible portfolio allocation.
arXiv Detail & Related papers (2024-03-25T12:04:03Z) - Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management [1.2016264781280588]
A multi-agent reinforcement learning (RL) approach is proposed to balance the trade-off between the overall portfolio returns and their potential risks.
The obtained empirical results clearly reveal the potential strengths of our proposed MASA framework.
arXiv Detail & Related papers (2024-02-01T11:31:26Z) - Which Matters Most in Making Fund Investment Decisions? A
Multi-granularity Graph Disentangled Learning Framework [47.308959396996606]
We develop a novel M ulti-granularity Graph Disentangled Learning framework named MGDL to effectively perform intelligent matching of fund investment products.
To attain stronger disentangled representations with specific semantics, MGDL explicitly involve two self-supervised signals, i.e., fund type based contrasts and fund popularity.
arXiv Detail & Related papers (2023-11-23T09:08:43Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Deep Graph Convolutional Reinforcement Learning for Financial Portfolio
Management -- DeepPocket [6.85316573653194]
Portfolio management aims at maximizing the return on investment while minimizing risk by continuously reallocating the assets forming the portfolio.
A graph convolutional reinforcement learning framework called DeepPocket is proposed whose objective is to exploit the time-varying interrelations between financial instruments.
DeepPocket is evaluated against five real-life datasets over three distinct investment periods.
arXiv Detail & Related papers (2021-05-06T15:07:36Z) - Learning Risk Preferences from Investment Portfolios Using Inverse
Optimization [25.19470942583387]
This paper presents a novel approach of measuring risk preference from existing portfolios using inverse optimization.
We demonstrate our methods on real market data that consists of 20 years of asset pricing and 10 years of mutual fund portfolio holdings.
arXiv Detail & Related papers (2020-10-04T21:29:29Z) - Deep Learning for Portfolio Optimization [5.833272638548154]
Instead of selecting individual assets, we trade Exchange-Traded Funds (ETFs) of market indices to form a portfolio.
We compare our method with a wide range of algorithms with results showing that our model obtains the best performance over the testing period.
arXiv Detail & Related papers (2020-05-27T21:28:43Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.