Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management
- URL: http://arxiv.org/abs/2402.00515v4
- Date: Tue, 10 Sep 2024 15:34:36 GMT
- Title: Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management
- Authors: Zhenglong Li, Vincent Tam, Kwan L. Yeung,
- Abstract summary: A multi-agent reinforcement learning (RL) approach is proposed to balance the trade-off between the overall portfolio returns and their potential risks.
The obtained empirical results clearly reveal the potential strengths of our proposed MASA framework.
- Score: 1.2016264781280588
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep or reinforcement learning (RL) approaches have been adapted as reactive agents to quickly learn and respond with new investment strategies for portfolio management under the highly turbulent financial market environments in recent years. In many cases, due to the very complex correlations among various financial sectors, and the fluctuating trends in different financial markets, a deep or reinforcement learning based agent can be biased in maximising the total returns of the newly formulated investment portfolio while neglecting its potential risks under the turmoil of various market conditions in the global or regional sectors. Accordingly, a multi-agent and self-adaptive framework namely the MASA is proposed in which a sophisticated multi-agent reinforcement learning (RL) approach is adopted through two cooperating and reactive agents to carefully and dynamically balance the trade-off between the overall portfolio returns and their potential risks. Besides, a very flexible and proactive agent as the market observer is integrated into the MASA framework to provide some additional information on the estimated market trends as valuable feedbacks for multi-agent RL approach to quickly adapt to the ever-changing market conditions. The obtained empirical results clearly reveal the potential strengths of our proposed MASA framework based on the multi-agent RL approach against many well-known RL-based approaches on the challenging data sets of the CSI 300, Dow Jones Industrial Average and S&P 500 indexes over the past 10 years. More importantly, our proposed MASA framework shed lights on many possible directions for future investigation.
Related papers
- Reinforcement Learning Framework for Quantitative Trading [0.0]
There is a significant disconnect in the effective utilization of financial indicators to better understand the potential market trends of individual securities.
This research endeavors to address these complexities by enhancing the ability of RL agents to effectively differentiate between positive and negative buy/sell actions using financial indicators.
arXiv Detail & Related papers (2024-11-12T06:44:28Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Automate Strategy Finding with LLM in Quant investment [4.46212317245124]
We propose a novel framework for quantitative stock investment in portfolio management and alpha mining.
This paper proposes a framework where large language models (LLMs) mine alpha factors from multimodal financial data.
Experiments on the Chinese stock markets demonstrate that this framework significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-09-10T07:42:28Z) - Explainable Post hoc Portfolio Management Financial Policy of a Deep Reinforcement Learning agent [44.99833362998488]
We develop a novel Explainable Deep Reinforcement Learning (XDRL) approach for portfolio management.
By executing our methodology, we can interpret in prediction time the actions of the agent to assess whether they follow the requisites of an investment policy.
arXiv Detail & Related papers (2024-07-19T17:40:39Z) - Developing An Attention-Based Ensemble Learning Framework for Financial Portfolio Optimisation [0.0]
We propose a multi-agent and self-adaptive portfolio optimisation framework integrated with attention mechanisms and time series, namely the MASAAT.
By reconstructing the tokens of financial data in a sequence, the attention-based cross-sectional analysis module and temporal analysis module of each agent can effectively capture the correlations between assets and the dependencies between time points.
The experimental results clearly demonstrate that the MASAAT framework achieves impressive enhancement when compared with many well-known portfolio optimsation approaches.
arXiv Detail & Related papers (2024-04-13T09:10:05Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
Reinforcement Learning technology has achieved remarkable success in quantitative trading.
Most existing RL-based market making methods focus on optimizing single-price level strategies.
We propose Imitative Market Maker (IMM), a novel RL framework leveraging both knowledge from suboptimal signal-based experts and direct policy interactions.
arXiv Detail & Related papers (2023-08-17T11:04:09Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z) - Towards a fully RL-based Market Simulator [4.648677931378919]
We present a new financial framework where two families of RL-based agents learn simultaneously to satisfy their objective.
This is a step towards a fully RL-based market simulator replicating complex market conditions.
arXiv Detail & Related papers (2021-10-13T16:14:19Z) - Permutation Invariant Policy Optimization for Mean-Field Multi-Agent
Reinforcement Learning: A Principled Approach [128.62787284435007]
We propose the mean-field proximal policy optimization (MF-PPO) algorithm, at the core of which is a permutation-invariant actor-critic neural architecture.
We prove that MF-PPO attains the globally optimal policy at a sublinear rate of convergence.
In particular, we show that the inductive bias introduced by the permutation-invariant neural architecture enables MF-PPO to outperform existing competitors.
arXiv Detail & Related papers (2021-05-18T04:35:41Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.