論文の概要: Large Language Models for Mobile GUI Text Input Generation: An Empirical Study
- arxiv url: http://arxiv.org/abs/2404.08948v1
- Date: Sat, 13 Apr 2024 09:56:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 17:53:43.916847
- Title: Large Language Models for Mobile GUI Text Input Generation: An Empirical Study
- Title(参考訳): モバイルGUIテキスト入力生成のための大規模言語モデル:実証的研究
- Authors: Chenhui Cui, Tao Li, Junjie Wang, Chunyang Chen, Dave Towey, Rubing Huang,
- Abstract要約: 大規模言語モデル(LLM)は優れたテキスト生成機能を示している。
本稿では,UIページに対するAndroidテキスト入力生成における9つの最先端LCMの有効性を広範囲に検討する。
- 参考スコア(独自算出の注目度): 24.256184336154544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile applications (apps) have become an essential part of our daily lives, making ensuring their quality an important activity. GUI testing, a quality assurance method, has frequently been used for mobile apps. When conducting GUI testing, it is important to generate effective text inputs for the text-input components. Some GUIs require these text inputs to move from one page to the next, which remains a challenge to achieving complete UI exploration. Recently, Large Language Models (LLMs) have shown excellent text-generation capabilities. Among the LLMs, OpenAI's GPT series has been widely discussed and used. However, it may not be possible to use these LLMs for GUI testing actual mobile apps, due to the security and privacy issues related to the production data. Therefore, it is necessary to explore the potential of different LLMs to guide text-input generation in mobile GUI testing. This paper reports on a large-scale empirical study that extensively investigates the effectiveness of nine state-of-the-art LLMs in Android text-input generation for UI pages. We collected 114 UI pages from 62 open-source Android apps and extracted contextual information from the UI pages to construct prompts for LLMs to generate text inputs. The experimental results show that some LLMs can generate relatively more effective and higher-quality text inputs, achieving a 50.58% to 66.67% page-pass-through rate, and even detecting some real bugs in open-source apps. Compared with the GPT-3.5 and GPT-4 LLMs, other LLMs reduce the page-pass-through rates by 17.97% to 84.79% and 21.93% to 85.53%, respectively. We also found that using more complete UI contextual information can increase the page-pass-through rates of LLMs for generating text inputs. In addition, we also describe six insights gained regarding the use of LLMs for Android testing: These insights will benefit the Android testing community.
- Abstract(参考訳): モバイルアプリケーション(アプリ)は、私たちの日常生活において不可欠な部分となり、品質を重要なアクティビティとして保証しています。
品質保証手法であるGUIテストは、モバイルアプリで頻繁に使用されている。
GUIテストを行う際には、テキスト入力コンポーネントに対して効果的なテキスト入力を生成することが重要である。
一部のGUIは、これらのテキスト入力を1ページから次のページに移動しなければならない。
近年,Large Language Models (LLMs) は優れたテキスト生成機能を示している。
LLMの中で、OpenAIのGPTシリーズは広く議論され、使用されている。
しかし、運用データに関するセキュリティとプライバシの問題のため、実際のモバイルアプリをGUIテストするためにこれらのLLMを使用することはできないかもしれない。
そのため,モバイルGUIテストにおけるテキスト入力生成のガイドとして,異なるLLMの可能性を検討する必要がある。
本稿では,UIページに対するAndroidテキスト入力生成における9つの最先端LCMの有効性を広範囲に調査する大規模な実証的研究について報告する。
62のオープンソースAndroidアプリから114のUIページを収集し、UIページからコンテキスト情報を抽出し、LLMがテキスト入力を生成するプロンプトを構築した。
実験の結果、一部のLCMは比較的効果的で高品質なテキスト入力を生成でき、50.58%から66.67%のページパススルーレートを実現し、またオープンソースのアプリケーションの実際のバグも検出できることがわかった。
GPT-3.5 と GPT-4 LLM と比較して、他の LLM はページスルーレートを 17.97% から 84.79% に、21.93% から 85.53% に減らした。
また、より完全なUIコンテキスト情報を使用することで、テキスト入力を生成するためのLCMのページパススルー率を向上できることがわかった。
さらに、AndroidテストにLLMを使うことに関して得られた6つの洞察についても述べています。
関連論文リスト
- GigaCheck: Detecting LLM-generated Content [72.27323884094953]
本稿では,GigaCheckを提案することによって生成したテキスト検出の課題について検討する。
本研究は,LLM生成テキストとLLM生成テキストを区別する手法と,Human-Machine協調テキストにおけるLLM生成間隔を検出する手法について検討する。
具体的には,テキスト内のAI生成間隔をローカライズするために,コンピュータビジョンから適応したDETRのような検出モデルと組み合わせて,微調整の汎用LLMを用いる。
論文 参考訳(メタデータ) (2024-10-31T08:30:55Z) - ReMoDetect: Reward Models Recognize Aligned LLM's Generations [55.06804460642062]
大型言語モデル (LLM) は人間の好むテキストを生成する。
本稿では,これらのモデルで共有される共通特性について述べる。
報奨モデルの検出能力をさらに向上する2つのトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-05-27T17:38:33Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Make LLM a Testing Expert: Bringing Human-like Interaction to Mobile GUI
Testing via Functionality-aware Decisions [23.460051600514806]
GPTDroidは、モバイルアプリ向けのQ&AベースのGUIテスティングフレームワークである。
機能認識型メモリプロンプト機構を導入する。
アクティビティのカバレッジが32%向上し、より高速な速度で31%のバグを検出する。
論文 参考訳(メタデータ) (2023-10-24T12:30:26Z) - Testing the Limits: Unusual Text Inputs Generation for Mobile App Crash
Detection with Large Language Model [23.460051600514806]
本稿では,モバイルアプリのクラッシュ検出のための異常なテキスト入力を自動的に生成するInputBlasterを提案する。
異常な入力生成問題をテストジェネレータのセットを生成するタスクとして定式化し、それぞれが異常なテキスト入力のバッチを生成する。
36のテキスト入力ウィジェットで評価され、31の人気のあるAndroidアプリを含むキャッシュバグがあり、その結果、バグ検出率は78%で、最高のベースラインよりも136%高い。
論文 参考訳(メタデータ) (2023-10-24T09:10:51Z) - Detecting LLM-Generated Text in Computing Education: A Comparative Study
for ChatGPT Cases [0.0]
大規模言語モデル(LLM)は、教育における学術的完全性に深刻な脅威をもたらしている。
現代の検出器は、学術的完全性を維持するための完全なソリューションを提供するために、まだ改善を必要としている。
論文 参考訳(メタデータ) (2023-07-10T12:18:34Z) - Open-Source LLMs for Text Annotation: A Practical Guide for Model Setting and Fine-Tuning [5.822010906632045]
本稿では、政治科学研究に典型的なテキスト分類タスクにおけるオープンソースのLarge Language Models(LLM)の性能について検討する。
姿勢・話題・関連分類などの課題を調べることで,テキスト分析におけるLLMの使用に関する情報的判断を学者に指導することを目指す。
論文 参考訳(メタデータ) (2023-07-05T10:15:07Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
大規模言語モデル(LLM)は、高品質な人間によるテキストに非常に近い。
既存の検出ツールは、機械が生成したテキストと人間によるテキストしか区別できない。
本稿では,モデル固有,セキュア,効率的,拡張可能な検出ツールであるLLMDetを提案する。
論文 参考訳(メタデータ) (2023-05-24T10:45:16Z) - Chatting with GPT-3 for Zero-Shot Human-Like Mobile Automated GUI
Testing [23.460051600514806]
GPTDroid を提案し,GUI ページ情報を LLM に渡してテストスクリプトを抽出することにより,大規模言語モデルにモバイルアプリとのチャットを依頼する。
そこで我々はGUIページの静的コンテキストと反復テストプロセスの動的コンテキストを抽出する。
Google Playの86のアプリ上でGPTDroidを評価し、そのアクティビティカバレッジは71%で、最高のベースラインよりも32%高く、最高のベースラインよりも高速で36%多くのバグを検出することができます。
論文 参考訳(メタデータ) (2023-05-16T13:46:52Z) - A Survey of Pretrained Language Models Based Text Generation [97.64625999380425]
テキスト生成は、入力データから人間の言語で可読で読みやすいテキストを生成することを目的としている。
ディープラーニングは、ニューラルジェネレーションモデル、特に事前学習言語モデル(PLM)のパラダイムにより、この分野を大幅に進歩させた。
PLM上でのテキスト生成は、学術と産業の両方において有望な方向と見なされている。
論文 参考訳(メタデータ) (2022-01-14T01:44:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。