論文の概要: Constructing and Exploring Intermediate Domains in Mixed Domain Semi-supervised Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2404.08951v1
- Date: Sat, 13 Apr 2024 10:15:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 17:53:43.847257
- Title: Constructing and Exploring Intermediate Domains in Mixed Domain Semi-supervised Medical Image Segmentation
- Title(参考訳): 混合領域半監督型医用画像分割における中間領域の構築と探索
- Authors: Qinghe Ma, Jian Zhang, Lei Qi, Qian Yu, Yinghuan Shi, Yang Gao,
- Abstract要約: 限られたアノテーションとドメインシフトは、医用画像のセグメンテーションにおいて一般的な課題である。
混合ドメイン半監視医療画像コンポーネント(MiDSS)について紹介する。
提案手法は,3つの公開データセットで示されるように,前立腺データセットにおけるDiceスコアの顕著な13.57%の改善を実現する。
- 参考スコア(独自算出の注目度): 36.45117307751509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Both limited annotation and domain shift are prevalent challenges in medical image segmentation. Traditional semi-supervised segmentation and unsupervised domain adaptation methods address one of these issues separately. However, the coexistence of limited annotation and domain shift is quite common, which motivates us to introduce a novel and challenging scenario: Mixed Domain Semi-supervised medical image Segmentation (MiDSS). In this scenario, we handle data from multiple medical centers, with limited annotations available for a single domain and a large amount of unlabeled data from multiple domains. We found that the key to solving the problem lies in how to generate reliable pseudo labels for the unlabeled data in the presence of domain shift with labeled data. To tackle this issue, we employ Unified Copy-Paste (UCP) between images to construct intermediate domains, facilitating the knowledge transfer from the domain of labeled data to the domains of unlabeled data. To fully utilize the information within the intermediate domain, we propose a symmetric Guidance training strategy (SymGD), which additionally offers direct guidance to unlabeled data by merging pseudo labels from intermediate samples. Subsequently, we introduce a Training Process aware Random Amplitude MixUp (TP-RAM) to progressively incorporate style-transition components into intermediate samples. Compared with existing state-of-the-art approaches, our method achieves a notable 13.57% improvement in Dice score on Prostate dataset, as demonstrated on three public datasets. Our code is available at https://github.com/MQinghe/MiDSS .
- Abstract(参考訳): 限られたアノテーションとドメインシフトは、医用画像のセグメンテーションにおいて一般的な課題である。
従来の半教師付きセグメンテーションと教師なしドメイン適応手法はこれらの問題の1つに別々に対処する。
しかし、限定的なアノテーションとドメインシフトの共存は非常に一般的であり、我々は新しい、挑戦的なシナリオを導入する動機となっている: 混合ドメイン半監督型医療画像分割(MiDSS)。
このシナリオでは、複数の医療センターからのデータを処理し、単一のドメインで利用可能なアノテーションと、複数のドメインからの大量の未ラベルデータを扱う。
この問題を解決する鍵は、ラベル付きデータによるドメインシフトの存在下で、ラベル付きデータに対して信頼できる擬似ラベルを生成する方法にある。
この問題を解決するために、画像間で統一コピーペースト(UCP)を用いて中間領域を構築し、ラベル付きデータのドメインからラベルなしデータのドメインへの知識伝達を容易にする。
中間領域内の情報を十分に活用するために、中間サンプルから擬似ラベルをマージしてラベルなしデータへの直接ガイダンスを提供する対称誘導訓練戦略(SymGD)を提案する。
その後,学習過程を意識したランダム振幅混合アップ(TP-RAM)を導入し,段階的にスタイル遷移成分を中間サンプルに組み込む。
従来の最先端手法と比較して,提案手法は3つの公開データセットで示されるように,前立腺データセットにおけるDiceスコアの13.57%向上を実現している。
私たちのコードはhttps://github.com/MQinghe/MiDSSで利用可能です。
関連論文リスト
- FPL+: Filtered Pseudo Label-based Unsupervised Cross-Modality Adaptation for 3D Medical Image Segmentation [14.925162565630185]
医用画像分割のための拡張フィルタ擬似ラベル (FPL+) を用いたUnsupervised Domain Adaptation (UDA) 手法を提案する。
まず、ソースドメイン内のラベル付き画像を、擬似ソースドメインセットと擬似ターゲットドメインセットからなる二重ドメイントレーニングセットに変換するために、クロスドメインデータ拡張を使用する。
次に、ラベル付きソースドメインイメージとターゲットドメインイメージを擬似ラベルと組み合わせて最終セグメンタを訓練し、不確実性推定に基づく画像レベルの重み付けとデュアルドメインのコンセンサスに基づく画素レベルの重み付けを提案し、ノイズのある擬似の悪影響を軽減する。
論文 参考訳(メタデータ) (2024-04-07T14:21:37Z) - Inter-Domain Mixup for Semi-Supervised Domain Adaptation [108.40945109477886]
半教師付きドメイン適応(SSDA)は、ソースとターゲットのドメイン分布をブリッジすることを目的としており、少数のターゲットラベルが利用可能である。
既存のSSDAの作業は、ソースドメインとターゲットドメインの両方からラベル情報をフル活用して、ドメイン間の機能アライメントに失敗する。
本稿では,新しいSSDA手法であるIDMNE(Inter-domain Mixup with Neighborhood Expansion)を提案する。
論文 参考訳(メタデータ) (2024-01-21T10:20:46Z) - Enhancing Pseudo Label Quality for Semi-SupervisedDomain-Generalized
Medical Image Segmentation [42.3896755744262]
医用画像分割アルゴリズムのTounseen領域の一般化は、コンピュータ支援診断と手術にとって重要な研究課題である。
本稿では,半教師付き領域汎用医用画像分割のための信頼性に配慮したクロス・インスペクティブ・インスペクティブ・ゴリネットを提案する。
論文 参考訳(メタデータ) (2022-01-21T12:02:00Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
教師なしドメイン適応(Unsupervised domain adapt、UDA)は、完全にラベル付けされたソースドメインから異なるラベル付けされていないターゲットドメインに学習した知識を転送することを目的としている。
対照的な自己教師型学習に基づいて、トレーニングとテストセット間のドメインの相違を低減するために、機能を整列させます。
論文 参考訳(メタデータ) (2021-06-10T06:32:30Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDAはラベル付きソースドメインからラベルなしターゲットドメインへの効率的な知識伝達を試みている。
本稿では,領域にまたがるカテゴリ別センタロイドを適応させるコントラスト学習手法を提案する。
提案手法を自己学習で拡張し,メモリ効率の良い時間アンサンブルを用いて一貫性と信頼性の高い擬似ラベルを生成する。
論文 参考訳(メタデータ) (2021-05-05T11:55:53Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
マルチソースドメイン適応(MSDA)は、複数のラベル付きソースドメインからラベルなしターゲットドメインへのタスク知識の転送を扱う。
ラベル管理下のドメインを暗黙的に整列させる深層モデルが観察されるMSDAに対して、異なる視点を提示する。
論文 参考訳(メタデータ) (2021-03-20T12:44:13Z) - mDALU: Multi-Source Domain Adaptation and Label Unification with Partial
Datasets [102.62639692656458]
本稿では,この課題をマルチソースドメイン適応とラベル統一の問題として扱う。
本手法は,部分教師あり適応段階と完全教師あり適応段階からなる。
本手法は,画像分類,2次元意味画像分割,ジョイント2d-3d意味セグメンテーションの3つのタスクで検証する。
論文 参考訳(メタデータ) (2020-12-15T15:58:03Z) - Select, Label, and Mix: Learning Discriminative Invariant Feature
Representations for Partial Domain Adaptation [55.73722120043086]
部分領域適応のための識別的不変特徴表現を学習するための「選択、ラベル、混合(SLM)」フレームワークを開発した。
まず, 正の移動を避けるために, 外部からのサンプルを自動的にフィルタする, 単純で効率的な「選択」モジュールを提案する。
次に、「ラベル」モジュールは、ラベル付きソースドメインデータと生成されたターゲットドメインの擬似ラベルの両方を用いて分類器を反復的に訓練し、潜在空間の識別性を高める。
論文 参考訳(メタデータ) (2020-12-06T19:29:32Z) - Domain Generalization via Semi-supervised Meta Learning [7.722498348924133]
ラベルのないサンプルを活用するための領域一般化法を提案する。
メタ学習アプローチによってトレーニングされ、入力されたソースドメインと見えないターゲットドメイン間の分散シフトを模倣する。
ベンチマークデータセットによる実験結果から,DGは最先端領域の一般化や半教師付き学習方法よりも優れていた。
論文 参考訳(メタデータ) (2020-09-26T18:05:04Z) - DACS: Domain Adaptation via Cross-domain Mixed Sampling [4.205692673448206]
教師なしのドメイン適応は、あるドメインからラベル付きデータをトレーニングし、同時に関心のあるドメインでラベルなしのデータから学習しようとする。
DACS: クロスドメイン混合サンプリングによるドメイン適応(Domain Adaptation)を提案する。
我々は,GTA5からCityscapesへの最先端の成果を得ることによって,ソリューションの有効性を実証する。
論文 参考訳(メタデータ) (2020-07-17T00:43:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。