Fast Fishing: Approximating BAIT for Efficient and Scalable Deep Active Image Classification
- URL: http://arxiv.org/abs/2404.08981v2
- Date: Fri, 30 Aug 2024 13:06:28 GMT
- Title: Fast Fishing: Approximating BAIT for Efficient and Scalable Deep Active Image Classification
- Authors: Denis Huseljic, Paul Hahn, Marek Herde, Lukas Rauch, Bernhard Sick,
- Abstract summary: Deep active learning (AL) seeks to minimize the annotation costs for training deep neural networks.
BAIT, a recently proposed AL strategy based on the Fisher Information, has demonstrated impressive performance across various datasets.
This paper introduces two methods to enhance BAIT's computational efficiency and scalability.
- Score: 1.8567173419246403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep active learning (AL) seeks to minimize the annotation costs for training deep neural networks. BAIT, a recently proposed AL strategy based on the Fisher Information, has demonstrated impressive performance across various datasets. However, BAIT's high computational and memory requirements hinder its applicability on large-scale classification tasks, resulting in current research neglecting BAIT in their evaluation. This paper introduces two methods to enhance BAIT's computational efficiency and scalability. Notably, we significantly reduce its time complexity by approximating the Fisher Information. In particular, we adapt the original formulation by i) taking the expectation over the most probable classes, and ii) constructing a binary classification task, leading to an alternative likelihood for gradient computations. Consequently, this allows the efficient use of BAIT on large-scale datasets, including ImageNet. Our unified and comprehensive evaluation across a variety of datasets demonstrates that our approximations achieve strong performance with considerably reduced time complexity. Furthermore, we provide an extensive open-source toolbox that implements recent state-of-the-art AL strategies, available at https://github.com/dhuseljic/dal-toolbox.
Related papers
- Exploring Learning Complexity for Efficient Downstream Dataset Pruning [8.990878450631596]
Existing dataset pruning methods require training on the entire dataset.
We propose a straightforward, novel, and training-free hardness score named Distorting-based Learning Complexity (DLC)
Our method is motivated by the observation that easy samples learned faster can also be learned with fewer parameters.
arXiv Detail & Related papers (2024-02-08T02:29:33Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Scalable Batch Acquisition for Deep Bayesian Active Learning [70.68403899432198]
In deep active learning, it is important to choose multiple examples to markup at each step.
Existing solutions to this problem, such as BatchBALD, have significant limitations in selecting a large number of examples.
We present the Large BatchBALD algorithm, which aims to achieve comparable quality while being more computationally efficient.
arXiv Detail & Related papers (2023-01-13T11:45:17Z) - Batch Active Learning from the Perspective of Sparse Approximation [12.51958241746014]
Active learning enables efficient model training by leveraging interactions between machine learning agents and human annotators.
We study and propose a novel framework that formulates batch active learning from the sparse approximation's perspective.
Our active learning method aims to find an informative subset from the unlabeled data pool such that the corresponding training loss function approximates its full data pool counterpart.
arXiv Detail & Related papers (2022-11-01T03:20:28Z) - Segmentation-guided Domain Adaptation for Efficient Depth Completion [3.441021278275805]
We propose an efficient depth completion model based on a vgg05-like CNN architecture and a semi-supervised domain adaptation approach.
In order to boost spatial coherence, we guide the learning process using segmentations as additional source of information.
Our approach improves on previous efficient and low parameter state of the art approaches while having a noticeably lower computational footprint.
arXiv Detail & Related papers (2022-10-14T13:01:25Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - FG-Net: Fast Large-Scale LiDAR Point CloudsUnderstanding Network
Leveraging CorrelatedFeature Mining and Geometric-Aware Modelling [15.059508985699575]
FG-Net is a general deep learning framework for large-scale point clouds understanding without voxelizations.
We propose a deep convolutional neural network leveraging correlated feature mining and deformable convolution based geometric-aware modelling.
Our approaches outperform state-of-the-art approaches in terms of accuracy and efficiency.
arXiv Detail & Related papers (2020-12-17T08:20:09Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.