Batch Active Learning from the Perspective of Sparse Approximation
- URL: http://arxiv.org/abs/2211.00246v1
- Date: Tue, 1 Nov 2022 03:20:28 GMT
- Title: Batch Active Learning from the Perspective of Sparse Approximation
- Authors: Maohao Shen, Bowen Jiang, Jacky Yibo Zhang, Oluwasanmi Koyejo
- Abstract summary: Active learning enables efficient model training by leveraging interactions between machine learning agents and human annotators.
We study and propose a novel framework that formulates batch active learning from the sparse approximation's perspective.
Our active learning method aims to find an informative subset from the unlabeled data pool such that the corresponding training loss function approximates its full data pool counterpart.
- Score: 12.51958241746014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning enables efficient model training by leveraging interactions
between machine learning agents and human annotators. We study and propose a
novel framework that formulates batch active learning from the sparse
approximation's perspective. Our active learning method aims to find an
informative subset from the unlabeled data pool such that the corresponding
training loss function approximates its full data pool counterpart. We realize
the framework as sparsity-constrained discontinuous optimization problems,
which explicitly balance uncertainty and representation for large-scale
applications and could be solved by greedy or proximal iterative hard
thresholding algorithms. The proposed method can adapt to various settings,
including both Bayesian and non-Bayesian neural networks. Numerical experiments
show that our work achieves competitive performance across different settings
with lower computational complexity.
Related papers
- Neural Active Learning Beyond Bandits [69.99592173038903]
We study both stream-based and pool-based active learning with neural network approximations.
We propose two algorithms based on the newly designed exploitation and exploration neural networks for stream-based and pool-based active learning.
arXiv Detail & Related papers (2024-04-18T21:52:14Z) - Bandit-Driven Batch Selection for Robust Learning under Label Noise [20.202806541218944]
We introduce a novel approach for batch selection in Gradient Descent (SGD) training, leveraging bandit algorithms.
Our methodology focuses on optimizing the learning process in the presence of label noise, a prevalent issue in real-world datasets.
arXiv Detail & Related papers (2023-10-31T19:19:01Z) - BatchGFN: Generative Flow Networks for Batch Active Learning [80.73649229919454]
BatchGFN is a novel approach for pool-based active learning that uses generative flow networks to sample sets of data points proportional to a batch reward.
We show our approach enables principled sampling near-optimal utility batches at inference time with a single forward pass per point in the batch in toy regression problems.
arXiv Detail & Related papers (2023-06-26T20:41:36Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - On the Limit Performance of Floating Gossip [6.883143706086789]
Gossip Learning scheme relies on Floating Content to implement location-based probabilistic evolution of machine learning models in an infrastructure-less manner.
We consider dynamic scenarios where continuous learning is necessary, and we adopt a mean field approach to investigate the limit performance of Floating Gossip.
Our model shows that Floating Gossip can be very effective in implementing continuous training and update of machine learning models in a cooperative manner.
arXiv Detail & Related papers (2023-02-16T16:42:38Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - BALanCe: Deep Bayesian Active Learning via Equivalence Class Annealing [7.9107076476763885]
BALanCe is a deep active learning framework that mitigates the effect of uncertainty estimates.
Batch-BALanCe is a generalization of the sequential algorithm to the batched setting.
We show that Batch-BALanCe achieves state-of-the-art performance on several benchmark datasets for active learning.
arXiv Detail & Related papers (2021-12-27T15:38:27Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget.
We conduct an empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework.
We also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance.
arXiv Detail & Related papers (2021-01-20T13:59:25Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Active Learning for Gaussian Process Considering Uncertainties with
Application to Shape Control of Composite Fuselage [7.358477502214471]
We propose two new active learning algorithms for the Gaussian process with uncertainties.
We show that the proposed approach can incorporate the impact from uncertainties, and realize better prediction performance.
This approach has been applied to improving the predictive modeling for automatic shape control of composite fuselage.
arXiv Detail & Related papers (2020-04-23T02:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.