Proof-of-Learning with Incentive Security
- URL: http://arxiv.org/abs/2404.09005v6
- Date: Sun, 14 Jul 2024 20:56:10 GMT
- Title: Proof-of-Learning with Incentive Security
- Authors: Zishuo Zhao, Zhixuan Fang, Xuechao Wang, Xi Chen, Yuan Zhou,
- Abstract summary: Most concurrent blockchain systems rely heavily on the Proof-of-Work (PoW) or Proof-of-Stake (PoS) mechanisms for decentralized consensus and security assurance.
We introduce the concept of incentive-security that incentivizes rational provers to behave honestly for their best interest, bypassing the existing hardness to design a PoL mechanism with computational efficiency, a provable incentive-security guarantee and controllable difficulty.
- Score: 16.935492468241094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most concurrent blockchain systems rely heavily on the Proof-of-Work (PoW) or Proof-of-Stake (PoS) mechanisms for decentralized consensus and security assurance. However, the substantial energy expenditure stemming from computationally intensive yet meaningless tasks has raised considerable concerns surrounding traditional PoW approaches, The PoS mechanism, while free of energy consumption, is subject to security and economic issues. Addressing these issues, the paradigm of Proof-of-Useful-Work (PoUW) seeks to employ challenges of practical significance as PoW, thereby imbuing energy consumption with tangible value. While previous efforts in Proof of Learning (PoL) explored the utilization of deep learning model training SGD tasks as PoUW challenges, recent research has revealed its vulnerabilities to adversarial attacks and the theoretical hardness in crafting a byzantine-secure PoL mechanism. In this paper, we introduce the concept of incentive-security that incentivizes rational provers to behave honestly for their best interest, bypassing the existing hardness to design a PoL mechanism with computational efficiency, a provable incentive-security guarantee and controllable difficulty. Particularly, our work is secure against two attacks to the recent work of Jia et al. [2021], and also improves the computational overhead from $\Theta(1)$ to $O(\frac{\log E}{E})$. Furthermore, while most recent research assumes trusted problem providers and verifiers, our design also guarantees frontend incentive-security even when problem providers are untrusted, and verifier incentive-security that bypasses the Verifier's Dilemma. By incorporating ML training into blockchain consensus mechanisms with provable guarantees, our research not only proposes an eco-friendly solution to blockchain systems, but also provides a proposal for a completely decentralized computing power market in the new AI age.
Related papers
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - Efficient Zero-Knowledge Proofs for Set Membership in Blockchain-Based Sensor Networks: A Novel OR-Aggregation Approach [20.821562115822182]
This paper introduces a novel OR-aggregation approach for zero-knowledge set membership proofs.
We provide a comprehensive theoretical foundation, detailed protocol specification, and rigorous security analysis.
Results show significant improvements in proof size, generation time, and verification efficiency.
arXiv Detail & Related papers (2024-10-11T18:16:34Z) - Proof-of-Collaborative-Learning: A Multi-winner Federated Learning Consensus Algorithm [2.5203968759841158]
We propose Proof-of-Collaborative-Learning (PoCL), a multi-winner federated learning validated consensus mechanism.
PoCL redirects the power of blockchains to train federated learning models.
We present a novel evaluation mechanism to ensure the efficiency of the locally trained models of miners.
arXiv Detail & Related papers (2024-07-17T21:14:05Z) - A Novel Endorsement Protocol to Secure BFT-Based Consensus in Permissionless Blockchain [1.3723120574076126]
BFT-based consensus mechanisms are widely adopted in the permissioned blockchain to meet the high scalability requirements of the network.
Sybil attacks are one of the most potential threats when applying BFT-based consensus mechanisms in permissionless blockchain.
This paper presents a novel endorsement-based bootstrapping protocol with a signature algorithm that offers a streamlined, scalable identity endorsement and verification process.
arXiv Detail & Related papers (2024-05-04T03:00:33Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Blockchain-Envisioned UAV-Aided Disaster Relief Networks: Challenges and Solutions [21.759507457111468]
Unmanned aerial vehicles (UAVs)-aided disaster relief networks (UDRNs) leverage UAVs to assist ground relief networks by swiftly assessing affected areas and timely delivering lifesaving supplies.
To meet the growing demands for collaborative, trust-free, and transparent UDRN services, blockchain-based UDRNs emerge as a promising approach through immutable ledgers and distributed smart contracts.
This paper presents potential solutions: (i) a series of collaborative smart contracts for coordinated relief management; (ii) a dynamic contract audit mechanism to prevent known/unknown contract vulnerabilities; and (iii) a robust transaction forensics strategy with on
arXiv Detail & Related papers (2023-10-08T14:32:25Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
We propose a secure and reliable federated learning system based on blockchain and distributed ledger technology.
Our system incorporates a peer-to-peer voting mechanism and a reward-and-slash mechanism, which are powered by on-chain smart contracts, to detect and deter malicious behaviors.
arXiv Detail & Related papers (2023-07-02T11:23:33Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z) - Regulation conform DLT-operable payment adapter based on trustless -
justified trust combined generalized state channels [77.34726150561087]
Economy of Things (EoT) will be based on software agents running on peer-to-peer trustless networks.
We give an overview of current solutions that differ in their fundamental values and technological possibilities.
We propose to combine the strengths of the crypto based, decentralized trustless elements with established and well regulated means of payment.
arXiv Detail & Related papers (2020-07-03T10:45:55Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.