Theoretical research on generative diffusion models: an overview
- URL: http://arxiv.org/abs/2404.09016v1
- Date: Sat, 13 Apr 2024 14:08:56 GMT
- Title: Theoretical research on generative diffusion models: an overview
- Authors: Melike Nur Yeğin, Mehmet Fatih Amasyalı,
- Abstract summary: Generative diffusion models showed high success in many fields with a powerful theoretical background.
They convert the data distribution to noise and remove the noise back to obtain a similar distribution.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Generative diffusion models showed high success in many fields with a powerful theoretical background. They convert the data distribution to noise and remove the noise back to obtain a similar distribution. Many existing reviews focused on the specific application areas without concentrating on the research about the algorithm. Unlike them we investigated the theoretical developments of the generative diffusion models. These approaches mainly divide into two: training-based and sampling-based. Awakening to this allowed us a clear and understandable categorization for the researchers who will make new developments in the future.
Related papers
- Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
diffusion model-based solutions have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity.
We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models.
We summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios.
arXiv Detail & Related papers (2024-06-17T01:49:27Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - Diffusion-based Graph Generative Methods [51.04666253001781]
We systematically and comprehensively review on diffusion-based graph generative methods.
We first make a review on three mainstream paradigms of diffusion methods, which are denoising diffusion models, score-based genrative models, and differential equations.
In the end, we point out some limitations of current studies and future directions of future explorations.
arXiv Detail & Related papers (2024-01-28T10:09:05Z) - Diffusion Models for Reinforcement Learning: A Survey [22.670096541841325]
Diffusion models surpass previous generative models in sample quality and training stability.
Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions.
This survey aims to provide an overview of this emerging field and hopes to inspire new avenues of research.
arXiv Detail & Related papers (2023-11-02T13:23:39Z) - The Emergence of Reproducibility and Generalizability in Diffusion Models [10.188731323681575]
Given the same starting noise input and a deterministic sampler, different diffusion models often yield remarkably similar outputs.
We show that diffusion models are learning distinct distributions affected by the training data size.
This valuable property generalizes to many variants of diffusion models, including those for conditional use, solving inverse problems, and model fine-tuning.
arXiv Detail & Related papers (2023-10-08T19:02:46Z) - Diffusion Models for Time Series Applications: A Survey [23.003273147019446]
Diffusion models are used in image, video, and text synthesis nowadays.
We focus on diffusion-based methods for time series forecasting, imputation, and generation.
We conclude the common limitation of diffusion-based methods and highlight potential future research directions.
arXiv Detail & Related papers (2023-05-01T02:06:46Z) - Diffusion Models for Medical Image Analysis: A Comprehensive Survey [7.272308924113656]
Denoising diffusion models, a class of generative models, have garnered immense interest lately in various deep-learning problems.
Diffusion models are widely appreciated for their strong mode coverage and quality of the generated samples.
This survey intends to provide a comprehensive overview of diffusion models in the discipline of medical image analysis.
arXiv Detail & Related papers (2022-11-14T23:50:52Z) - Diffusion Models in Vision: A Survey [80.82832715884597]
A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage.
Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens.
arXiv Detail & Related papers (2022-09-10T22:00:30Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.