Enhancing Security Awareness Through Gamified Approaches
- URL: http://arxiv.org/abs/2404.09052v1
- Date: Sat, 13 Apr 2024 17:32:05 GMT
- Title: Enhancing Security Awareness Through Gamified Approaches
- Authors: Yussuf Ahmed, Micheal Ezealor, Haitham Mahmoud, MohamedAjmal Azad, Mohamed BenFarah, Mehdi Yousefi,
- Abstract summary: Gamification is a new concept in the field of information security awareness training (SAT) campaigns.
This paper examines the effectiveness ofGamification in promoting security awareness among smart meter components for smart grid users/operators.
It can be demonstrated that the scores of participants in the three levels have improved by 40%, 35% and 29%, respectively.
- Score: 0.21990652930491858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advent of smart grid (SG) systems, electricity networks have been able to ensure greater efficiency and utility by interconnecting their grids through cloud-based technology. As SGs become increasingly complex, a wide range of security challenges arise, threatening the grid's reliability, safety, efficiency, and stability. The security challenges include the potential exposure of personal data due to hackers intercepting the communications between the SG infrastructure and the smart meters. Security awareness plays a vital role in addressing some of these challenges. However, the traditional training programs are no longer efficient for instilling information security culture in organisations or from an individual user perspective. Gamification is a new concept in the field of information security awareness training (SAT) campaigns that can be introduced to fill in this gap by providing employees with a means of practising and learning about many security flaws and risks that exist within the organisation. Thus, this paper examines the effectiveness of gamification in promoting security awareness among smart meter components for smart grid users/operators. A gaming application is developed as part of the study with the aim of training and evaluating the results through three difficulty levels of questionnaires. Furthermore, the results are evaluated for the three difficulty levels as well as the overall flag captured. It can be demonstrated that the scores of participants in the three levels have improved by 40%, 35% and 29%, respectively. This reflects the awareness of learning within our system.
Related papers
- Linkage on Security, Privacy and Fairness in Federated Learning: New Balances and New Perspectives [48.48294460952039]
This survey offers comprehensive descriptions of the privacy, security, and fairness issues in federated learning.
We contend that there exists a trade-off between privacy and fairness and between security and sharing.
arXiv Detail & Related papers (2024-06-16T10:31:45Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Trust-based Approaches Towards Enhancing IoT Security: A Systematic Literature Review [3.0969632359049473]
This research paper presents a systematic literature review on the Trust-based cybersecurity security approaches for IoT.
We highlighted the common trust-based mitigation techniques in existence for dealing with these threats.
Several open issues were highlighted, and future research directions presented.
arXiv Detail & Related papers (2023-11-20T12:21:35Z) - Security and Privacy Issues of Federated Learning [0.0]
Federated Learning (FL) has emerged as a promising approach to address data privacy and confidentiality concerns.
This paper presents a comprehensive taxonomy of security and privacy challenges in Federated Learning (FL) across various machine learning models.
arXiv Detail & Related papers (2023-07-22T22:51:07Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
We systematize the security threats to KGR according to the adversary's objectives, knowledge, and attack vectors.
We present ROAR, a new class of attacks that instantiate a variety of such threats.
We explore potential countermeasures against ROAR, including filtering of potentially poisoning knowledge and training with adversarially augmented queries.
arXiv Detail & Related papers (2023-05-03T18:47:42Z) - A Survey of Trustworthy Federated Learning with Perspectives on
Security, Robustness, and Privacy [47.89042524852868]
Federated Learning (FL) stands out as a promising solution for diverse real-world scenarios.
However, challenges around data isolation and privacy threaten the trustworthiness of FL systems.
arXiv Detail & Related papers (2023-02-21T12:52:12Z) - New Challenges in Reinforcement Learning: A Survey of Security and
Privacy [26.706957408693363]
Reinforcement learning (RL) is one of the most important branches of AI.
RL has been widely applied in multiple areas, such as healthcare, data markets, autonomous driving, and robotics.
Some of these applications and systems have been shown to be vulnerable to security or privacy attacks.
arXiv Detail & Related papers (2022-12-31T12:30:43Z) - Getting Users Smart Quick about Security: Results from 90 Minutes of
Using a Persuasive Toolkit for Facilitating Information Security Problem
Solving by Non-Professionals [2.4923006485141284]
A balanced level of user engagement in security is difficult to achieve due to difference of priorities between the business perspective and the security perspective.
We have developed a persuasive software toolkit to engage users in structured discussions about security vulnerabilities in their company.
In the research reported here we examine how non-professionals perceived security problems through a short-term use of the toolkit.
arXiv Detail & Related papers (2022-09-06T11:37:21Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKG is a system for automated OSCTI gathering and management.
It uses a combination of AI and NLP techniques to extract high-fidelity knowledge about threat behaviors.
arXiv Detail & Related papers (2021-01-19T18:31:35Z) - A Research Ecosystem for Secure Computing [4.212354651854757]
Security of computers, systems, and applications has been an active area of research in computer science for decades.
Challenges range from security and trust of the information ecosystem to adversarial artificial intelligence and machine learning.
New incentives and education are at the core of this change.
arXiv Detail & Related papers (2021-01-04T22:42:28Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.