論文の概要: Intelligent Chemical Purification Technique Based on Machine Learning
- arxiv url: http://arxiv.org/abs/2404.09114v1
- Date: Sun, 14 Apr 2024 01:44:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 15:27:43.968310
- Title: Intelligent Chemical Purification Technique Based on Machine Learning
- Title(参考訳): 機械学習に基づくインテリジェント化学浄化技術
- Authors: Wenchao Wu, Hao Xu, Dongxiao Zhang, Fanyang Mo,
- Abstract要約: 本研究では, カラムクロマトグラフィーを用いた人工知能の革新的開発を行い, 不効率を解消し, 化学分離・浄化領域におけるデータの収集を標準化することを目的とする。
高精度なデータ取得と高度な機械学習アルゴリズムを用いた自動プラットフォームの開発により、キー分離パラメータを予測する予測モデルを構築した。
新規な計量である分離確率(S_p$)は、有効化合物分離の確率を定量化し、実験的な検証によって検証する。
- 参考スコア(独自算出の注目度): 5.023197681500998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an innovative of artificial intelligence with column chromatography, aiming to resolve inefficiencies and standardize data collection in chemical separation and purification domain. By developing an automated platform for precise data acquisition and employing advanced machine learning algorithms, we constructed predictive models to forecast key separation parameters, thereby enhancing the efficiency and quality of chromatographic processes. The application of transfer learning allows the model to adapt across various column specifications, broadening its utility. A novel metric, separation probability ($S_p$), quantifies the likelihood of effective compound separation, validated through experimental verification. This study signifies a significant step forward int the application of AI in chemical research, offering a scalable solution to traditional chromatography challenges and providing a foundation for future technological advancements in chemical analysis and purification.
- Abstract(参考訳): 本研究では, カラムクロマトグラフィーを用いた人工知能の革新的開発を行い, 不効率を解消し, 化学分離・浄化領域におけるデータの収集を標準化することを目的とする。
高精度なデータ取得と高度な機械学習アルゴリズムを用いた自動プラットフォームを開発することにより,重要な分離パラメータを予測する予測モデルを構築し,クロマトグラフィープロセスの効率と品質を向上させる。
トランスファーラーニングの適用により、モデルは様々な列の仕様に適応し、その実用性を広げることができる。
新規な計量である分離確率(S_p$)は、有効化合物分離の確率を定量化し、実験的な検証によって検証する。
この研究は、化学研究にAIを応用し、従来のクロマトグラフィーの課題に対するスケーラブルなソリューションを提供し、化学分析と浄化における将来の技術進歩の基盤を提供する、重要な一歩である。
関連論文リスト
- Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network [0.9736758288065405]
変異原性は、様々なネガティブな結果をもたらす遺伝子変異と関連しているため、懸念される。
本研究では,新しいアンサンブルに基づく変異原性予測モデルを提案する。
論文 参考訳(メタデータ) (2024-09-03T09:14:21Z) - A Gaussian Process Model for Ordinal Data with Applications to Chemoinformatics [0.0]
化学実験の結果を予測するための条件付きガウス過程モデルを提案する。
我々のモデルの新しい側面は、核がスケーリングパラメータを含み、化学空間の要素間の相関の強さを制御することである。
本稿では,化学発見の容易化と化合物の有効性に対する重要な特徴の同定のための遺伝的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-16T11:18:32Z) - Exploring Machine Learning Algorithms for Infection Detection Using GC-IMS Data: A Preliminary Study [2.4961885884659987]
本研究は, 正確な感染診断の現在進行中の問題に対処することを目的としている。
Gas Chromatography-Ion Mobility Spectrometry (GC-IMS)データを利用して、機械学習アルゴリズムを1つのプラットフォームに組み込むことで、この問題に対処することを目指している。
論文 参考訳(メタデータ) (2024-04-24T09:25:16Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
本稿では,幅広い化学文献から高忠実度抽出が可能なエンドツーエンドAIエージェントフレームワークを提案する。
本フレームワークの有効性は,反応条件データの精度,リコール,F1スコアを用いて評価する。
論文 参考訳(メタデータ) (2024-02-20T13:21:46Z) - Drug Discovery under Covariate Shift with Domain-Informed Prior
Distributions over Functions [30.305418761024143]
実世界の薬物発見タスクは、しばしばラベル付きデータの不足とかなりの範囲のデータによって特徴づけられる。
我々は、データ生成プロセスの明示的な事前知識を事前分布にエンコードする原理的な方法を提案する。
我々は,Q-SAVIを組み込んで,事前知識のような化学空間をモデリングプロセスに組み込むことで,相当な精度と校正が可能であることを実証した。
論文 参考訳(メタデータ) (2023-07-14T05:01:10Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
本研究は,簡単な学習セットから複雑な露光の学習近似を提案する。
合成センサ応答に対するこのアプローチは, 分布外の化学分析物の検出を驚くほど改善することを示した。
論文 参考訳(メタデータ) (2023-02-09T20:19:57Z) - Retention Time Prediction for Chromatographic Enantioseparation by
Quantile Geometry-enhanced Graph Neural Network [2.4431531175170362]
提案する研究フレームワークは,保持時間予測とクロマトグラフィーによるエナンチオセパレーション促進に有効である。
実験により,提案手法は保持時間予測とクロマトグラフィーによるエナンチオセパレーション促進に有効であることが確認された。
論文 参考訳(メタデータ) (2022-11-07T14:46:47Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
機械学習(ML)アプローチのようなデータ駆動の手法は、大きな設計空間を合理的に探索する可能性が高い。
本研究の目的は,これまでのバイオプロセス開発におけるML手法の適用例を示すことである。
論文 参考訳(メタデータ) (2022-10-04T13:48:59Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
分子レグレッション問題に対する一般化能力を高めるために,MROTと呼ばれる新しい最適輸送ベースアルゴリズムを開発した。
MROTは最先端のモデルよりも優れており、新しい物質の発見を加速する有望な可能性を示している。
論文 参考訳(メタデータ) (2022-02-13T04:56:18Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。