論文の概要: Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission
- arxiv url: http://arxiv.org/abs/2404.09134v2
- Date: Sat, 29 Jun 2024 13:41:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 14:29:42.351968
- Title: Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission
- Title(参考訳): 衛星ネットワーク用大規模言語モデルを用いたAIエージェントの試作
- Authors: Ruichen Zhang, Hongyang Du, Yinqiu Liu, Dusit Niyato, Jiawen Kang, Zehui Xiong, Abbas Jamalipour, Dong In Kim,
- Abstract要約: 本稿では、モデル定式化のための生成人工知能(AI)エージェントを開発し、送信戦略の設計に専門家(MoE)の混合を適用した。
具体的には,大規模言語モデル(LLM)を活用して対話型モデリングパラダイムを構築する。
定式化問題の解法として, MoE-proximal Policy Optimization (PPO) アプローチを提案する。
- 参考スコア(独自算出の注目度): 74.10928850232717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In response to the needs of 6G global communications, satellite communication networks have emerged as a key solution. However, the large-scale development of satellite communication networks is constrained by the complex system models, whose modeling is challenging for massive users. Moreover, transmission interference between satellites and users seriously affects communication performance. To solve these problems, this paper develops generative artificial intelligence (AI) agents for model formulation and then applies a mixture of experts (MoE) approach to design transmission strategies. Specifically, we leverage large language models (LLMs) to build an interactive modeling paradigm and utilize retrieval-augmented generation (RAG) to extract satellite expert knowledge that supports mathematical modeling. Afterward, by integrating the expertise of multiple specialized components, we propose an MoE-proximal policy optimization (PPO) approach to solve the formulated problem. Each expert can optimize the optimization variables at which it excels through specialized training through its own network and then aggregates them through the gating network to perform joint optimization. The simulation results validate the accuracy and effectiveness of employing a generative agent for problem formulation. Furthermore, the superiority of the proposed MoE-ppo approach over other benchmarks is confirmed in solving the formulated problem. The adaptability of MoE-PPO to various customized modeling problems has also been demonstrated.
- Abstract(参考訳): 6Gグローバル通信の必要性に応えて、衛星通信ネットワークが鍵となるソリューションとして登場した。
しかし,衛星通信ネットワークの大規模開発は複雑なシステムモデルによって制約されている。
さらに,衛星とユーザ間の通信干渉は通信性能に深刻な影響を及ぼす。
これらの問題を解決するため、モデル定式化のための生成人工知能(AI)エージェントを開発し、その後、専門家(MoE)アプローチを併用して送信戦略を設計する。
具体的には、大規模言語モデル(LLM)を活用して対話型モデリングパラダイムを構築し、検索強化世代(RAG)を利用して、数学的モデリングをサポートする衛星専門家の知識を抽出する。
その後、複数の特殊コンポーネントの専門知識を統合することにより、定式化問題を解くためのMoE-proximal Policy Optimization (PPO)アプローチを提案する。
各専門家は、自身のネットワークを通じて特別なトレーニングを通じて最適化変数を最適化し、ゲーティングネットワークを介してそれらを集約して共同最適化を行うことができる。
シミュレーション結果は,問題定式化のための生成剤の精度と有効性を検証する。
さらに,定式化問題を解く上で,他のベンチマークよりもMoE-ppoアプローチの方が優れていることが確認された。
様々なカスタマイズされたモデリング問題に対するMoE-PPOの適応性も実証されている。
関連論文リスト
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
生成拡散モデル(GDM)は,ネットワーク最適化の新しいアプローチとして期待されている。
本研究ではまず,生成モデルの本質的な特徴について考察する。
本稿では,識別的ネットワーク最適化よりも生成モデルの利点を簡潔かつ直感的に示す。
論文 参考訳(メタデータ) (2024-11-01T09:05:47Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
拡散生成モデルはより広い範囲の解を考えることができ、学習パラメータによるより強力な一般化を示す。
拡散生成モデルの本質的な分布学習を利用して高品質な解を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T07:56:21Z) - Autonomous Multi-Objective Optimization Using Large Language Model [28.14607885386587]
マルチオブジェクト最適化問題(MOPs)は、現実世界のアプリケーションではユビキタスである。
我々は,MOPを解決するためのEA演算子を自律的に設計する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-13T10:35:16Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - CMAT: A Multi-Agent Collaboration Tuning Framework for Enhancing Small Language Models [8.123272461141815]
厳密にキュレートされた高品質データセットに基づいてトレーニングされたTinyAgentモデルを紹介する。
また,言語エージェントの能力向上を目的とした革新的システムであるCMAT(Collaborative Multi-Agent Tuning)フレームワークを提案する。
本研究では,マルチエージェントシステムと環境フィードバック機構を統合した新しいコミュニケーションエージェントフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-02T06:07:35Z) - Multi-Agent Reinforcement Learning for Power Control in Wireless
Networks via Adaptive Graphs [1.1861167902268832]
多エージェント深部強化学習(MADRL)は、電力制御のような幅広い複雑な最適化問題に対処するための有望な手法として登場した。
本稿では,これらの課題を緩和する有効な手段として,分散エージェント間の通信誘導構造としてグラフを用いることを提案する。
論文 参考訳(メタデータ) (2023-11-27T14:25:40Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。