Unveiling LLM Evaluation Focused on Metrics: Challenges and Solutions
- URL: http://arxiv.org/abs/2404.09135v1
- Date: Sun, 14 Apr 2024 03:54:00 GMT
- Title: Unveiling LLM Evaluation Focused on Metrics: Challenges and Solutions
- Authors: Taojun Hu, Xiao-Hua Zhou,
- Abstract summary: Large Language Models (LLMs) have gained significant attention across academia and industry for their versatile applications in text generation, question answering, and text summarization.
To quantify the performance, it's crucial to have a comprehensive grasp of existing metrics.
This paper offers a comprehensive exploration of LLM evaluation from a metrics perspective, providing insights into the selection and interpretation of metrics currently in use.
- Score: 2.5179515260542544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural Language Processing (NLP) is witnessing a remarkable breakthrough driven by the success of Large Language Models (LLMs). LLMs have gained significant attention across academia and industry for their versatile applications in text generation, question answering, and text summarization. As the landscape of NLP evolves with an increasing number of domain-specific LLMs employing diverse techniques and trained on various corpus, evaluating performance of these models becomes paramount. To quantify the performance, it's crucial to have a comprehensive grasp of existing metrics. Among the evaluation, metrics which quantifying the performance of LLMs play a pivotal role. This paper offers a comprehensive exploration of LLM evaluation from a metrics perspective, providing insights into the selection and interpretation of metrics currently in use. Our main goal is to elucidate their mathematical formulations and statistical interpretations. We shed light on the application of these metrics using recent Biomedical LLMs. Additionally, we offer a succinct comparison of these metrics, aiding researchers in selecting appropriate metrics for diverse tasks. The overarching goal is to furnish researchers with a pragmatic guide for effective LLM evaluation and metric selection, thereby advancing the understanding and application of these large language models.
Related papers
- A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - Exploring Large Language Models for Feature Selection: A Data-centric Perspective [17.99621520553622]
Large Language Models (LLMs) have influenced various domains, leveraging their exceptional few-shot and zero-shot learning capabilities.
We aim to explore and understand the LLMs-based feature selection methods from a data-centric perspective.
Our findings emphasize the effectiveness and robustness of text-based feature selection methods and showcase their potentials using a real-world medical application.
arXiv Detail & Related papers (2024-08-21T22:35:19Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
This study aims to evaluate the performance of Multimodal Large Language Models (MLLMs) on the VALSE benchmark.
We conducted a comprehensive assessment of state-of-the-art MLLMs, varying in model size and pretraining datasets.
arXiv Detail & Related papers (2024-07-17T11:26:47Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
Commit Message Generation (CMG) approaches aim to automatically generate commit messages based on given code diffs.
This paper conducts the first comprehensive experiment to investigate how far we have been in applying Large Language Models (LLMs) to generate high-quality commit messages.
arXiv Detail & Related papers (2024-04-23T08:24:43Z) - Large Language Models: A Survey [69.72787936480394]
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks.
LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data.
arXiv Detail & Related papers (2024-02-09T05:37:09Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
Large language model (LLM) has excellent performance and wide practical uses.
Existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios.
We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety.
Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system.
arXiv Detail & Related papers (2023-08-15T17:40:34Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.