Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond
- URL: http://arxiv.org/abs/2404.14824v2
- Date: Wed, 06 Nov 2024 01:37:52 GMT
- Title: Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond
- Authors: Pengyu Xue, Linhao Wu, Zhongxing Yu, Zhi Jin, Zhen Yang, Xinyi Li, Zhenyu Yang, Yue Tan,
- Abstract summary: Commit Message Generation (CMG) approaches aim to automatically generate commit messages based on given code diffs.
This paper conducts the first comprehensive experiment to investigate how far we have been in applying Large Language Models (LLMs) to generate high-quality commit messages.
- Score: 24.151927600694066
- License:
- Abstract: Commit Message Generation (CMG) approaches aim to automatically generate commit messages based on given code diffs, which facilitate collaboration among developers and play a critical role in Open-Source Software (OSS). Very recently, Large Language Models (LLMs) have demonstrated extensive applicability in diverse code-related task. But few studies systematically explored their effectiveness using LLMs. This paper conducts the first comprehensive experiment to investigate how far we have been in applying LLM to generate high-quality commit messages. Motivated by a pilot analysis, we first clean the most widely-used CMG dataset following practitioners' criteria. Afterward, we re-evaluate diverse state-of-the-art CMG approaches and make comparisons with LLMs, demonstrating the superior performance of LLMs against state-of-the-art CMG approaches. Then, we further propose four manual metrics following the practice of OSS, including Accuracy, Integrity, Applicability, and Readability, and assess various LLMs accordingly. Results reveal that GPT-3.5 performs best overall, but different LLMs carry different advantages. To further boost LLMs' performance in the CMG task, we propose an Efficient Retrieval-based In-Context Learning (ICL) framework, namely ERICommiter, which leverages a two-step filtering to accelerate the retrieval efficiency and introduces semantic/lexical-based retrieval algorithm to construct the ICL examples. Extensive experiments demonstrate the substantial performance improvement of ERICommiter on various LLMs for code diffs of different programming languages. Meanwhile, ERICommiter also significantly reduces the retrieval time while keeping almost the same performance. Our research contributes to the understanding of LLMs' capabilities in the CMG field and provides valuable insights for practitioners seeking to leverage these tools in their workflows.
Related papers
- Experiences from Using LLMs for Repository Mining Studies in Empirical Software Engineering [12.504438766461027]
Large Language Models (LLMs) have transformed Software Engineering (SE) by providing innovative methods for analyzing software repositories.
Our research packages a framework, coined Prompt Refinement and Insights for Mining Empirical Software repositories (PRIMES)
Our findings indicate that standardizing prompt engineering and using PRIMES can enhance the reliability and accuracy of studies utilizing LLMs.
arXiv Detail & Related papers (2024-11-15T06:08:57Z) - Instruction Tuning Vs. In-Context Learning: Revisiting Large Language Models in Few-Shot Computational Social Science [0.1499944454332829]
We evaluate the classification performance of large language models (LLMs) using in-context learning (ICL) and instruction tuning (IT)
ICL offers a rapid alternative for task adaptation by learning from examples without explicit gradient updates.
Our research highlights the significant advantages of ICL in handling CSS tasks in few-shot settings.
arXiv Detail & Related papers (2024-09-23T02:43:08Z) - Achieving Peak Performance for Large Language Models: A Systematic Review [0.0]
Large language models (LLMs) have achieved remarkable success in natural language processing (NLP)
As models grow into the trillion- parameter range, computational and memory costs increase significantly.
This makes it difficult for many researchers to access the resources needed to train or apply these models.
arXiv Detail & Related papers (2024-09-07T13:57:41Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Unveiling LLM Evaluation Focused on Metrics: Challenges and Solutions [2.5179515260542544]
Large Language Models (LLMs) have gained significant attention across academia and industry for their versatile applications in text generation, question answering, and text summarization.
To quantify the performance, it's crucial to have a comprehensive grasp of existing metrics.
This paper offers a comprehensive exploration of LLM evaluation from a metrics perspective, providing insights into the selection and interpretation of metrics currently in use.
arXiv Detail & Related papers (2024-04-14T03:54:00Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.