RF-Diffusion: Radio Signal Generation via Time-Frequency Diffusion
- URL: http://arxiv.org/abs/2404.09140v1
- Date: Sun, 14 Apr 2024 04:56:05 GMT
- Title: RF-Diffusion: Radio Signal Generation via Time-Frequency Diffusion
- Authors: Guoxuan Chi, Zheng Yang, Chenshu Wu, Jingao Xu, Yuchong Gao, Yunhao Liu, Tony Xiao Han,
- Abstract summary: We introduce a novel Time-Frequency Diffusion theory to enhance the original diffusion model, enabling it to tap into the information within the time, frequency, and complex-valued domains of RF signals.
RF-Diffusion is a versatile solution to generate diverse, high-quality, and time-series RF data.
We also showcase the versatility of RF-Diffusion in boosting Wi-Fi sensing systems and performing channel estimation in 5G networks.
- Score: 15.175370227353406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Along with AIGC shines in CV and NLP, its potential in the wireless domain has also emerged in recent years. Yet, existing RF-oriented generative solutions are ill-suited for generating high-quality, time-series RF data due to limited representation capabilities. In this work, inspired by the stellar achievements of the diffusion model in CV and NLP, we adapt it to the RF domain and propose RF-Diffusion. To accommodate the unique characteristics of RF signals, we first introduce a novel Time-Frequency Diffusion theory to enhance the original diffusion model, enabling it to tap into the information within the time, frequency, and complex-valued domains of RF signals. On this basis, we propose a Hierarchical Diffusion Transformer to translate the theory into a practical generative DNN through elaborated design spanning network architecture, functional block, and complex-valued operator, making RF-Diffusion a versatile solution to generate diverse, high-quality, and time-series RF data. Performance comparison with three prevalent generative models demonstrates the RF-Diffusion's superior performance in synthesizing Wi-Fi and FMCW signals. We also showcase the versatility of RF-Diffusion in boosting Wi-Fi sensing systems and performing channel estimation in 5G networks.
Related papers
- Rydberg Atomic Quantum Receivers for Classical Wireless Communication and Sensing [71.94873601156017]
Rydberg atomic quantum receiver (RAQR) is designed for receiving radio frequency (RF) signals.
RAQRs exhibit compelling scalability and lend themselves to the construction of innovative, compact receivers.
arXiv Detail & Related papers (2024-09-22T15:55:02Z) - RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach.
First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms.
Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates.
Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - NeRF-DetS: Enhancing Multi-View 3D Object Detection with Sampling-adaptive Network of Continuous NeRF-based Representation [60.47114985993196]
NeRF-Det unifies the tasks of novel view arithmetic and 3D perception.
We introduce a novel 3D perception network structure, NeRF-DetS.
NeRF-DetS outperforms competitive NeRF-Det on the ScanNetV2 dataset.
arXiv Detail & Related papers (2024-04-22T06:59:03Z) - Deep-Learned Compression for Radio-Frequency Signal Classification [0.49109372384514843]
Next-generation cellular concepts rely on the processing of large quantities of radio-frequency (RF) samples.
We propose a deep learned compression model, HQARF, to compress the complex-valued samples of RF signals.
We are assessing the effects of HQARF on the performance of an AI model trained to infer the modulation class of the RF signal.
arXiv Detail & Related papers (2024-03-05T17:42:39Z) - In-Sensor Radio Frequency Computing for Energy-Efficient Intelligent
Radar [8.041399176135178]
We propose to transform a large-scale RFNN into a compact RFNN while almost preserving its accuracy.
We construct the Robust TT-RFNN (RTT-RFNN) by incorporating a robustness solver on TT-RFNN to enhance its robustness.
Empirical evaluations conducted on MNIST and CIFAR-10 datasets show the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-12-16T06:21:42Z) - Prompt2NeRF-PIL: Fast NeRF Generation via Pretrained Implicit Latent [61.56387277538849]
This paper explores promptable NeRF generation for direct conditioning and fast generation of NeRF parameters for the underlying 3D scenes.
Prompt2NeRF-PIL is capable of generating a variety of 3D objects with a single forward pass.
We will show that our approach speeds up the text-to-NeRF model DreamFusion and the 3D reconstruction speed of the image-to-NeRF method Zero-1-to-3 by 3 to 5 times.
arXiv Detail & Related papers (2023-12-05T08:32:46Z) - One-shot Generative Distribution Matching for Augmented RF-based UAV Identification [0.0]
This work addresses the challenge of identifying Unmanned Aerial Vehicles (UAV) using radiofrequency (RF) fingerprinting in limited RF environments.
The complexity and variability of RF signals, influenced by environmental interference and hardware imperfections, often render traditional RF-based identification methods ineffective.
One-shot generative methods for augmenting transformed RF signals offer a significant improvement in UAV identification.
arXiv Detail & Related papers (2023-01-20T02:35:43Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT)
The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications.
arXiv Detail & Related papers (2022-05-22T12:16:43Z) - RFGAN: RF-Based Human Synthesis [9.709890321556204]
This paper aims to generate fine-grained optical human images by introducing a novel cross-modal RFGAN model.
To the best of our knowledge, this is the first work to generate optical images based on RF signals.
arXiv Detail & Related papers (2021-12-07T14:34:35Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Deep Neural Network Feature Designs for RF Data-Driven Wireless Device
Classification [9.05607520128194]
We present novel feature design approaches that exploit the distinct structures of the RF communication signals and the spectrum emissions caused by transmitter hardware impairments.
Our proposed DNN feature designs substantially improve classification robustness in terms of scalability, accuracy, signature anti-cloning, and insensitivity to environment perturbations.
arXiv Detail & Related papers (2021-03-02T20:19:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.