論文の概要: ToNER: Type-oriented Named Entity Recognition with Generative Language Model
- arxiv url: http://arxiv.org/abs/2404.09145v2
- Date: Tue, 11 Jun 2024 14:05:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 22:03:14.322304
- Title: ToNER: Type-oriented Named Entity Recognition with Generative Language Model
- Title(参考訳): ToNER: 生成言語モデルを用いた型指向名前付きエンティティ認識
- Authors: Guochao Jiang, Ziqin Luo, Yuchen Shi, Dixuan Wang, Jiaqing Liang, Deqing Yang,
- Abstract要約: 生成モデルに基づく新しいNERフレームワーク、すなわちToNERを提案する。
ToNERでは、文中に最も現れる可能性が最も高いエンティティタイプを特定するために、最初は型マッチングモデルが提案されている。
我々は、生成モデルのエンコーダを微調整するために、複数のバイナリ分類タスクを追加し、入力文の洗練された表現を生成する。
- 参考スコア(独自算出の注目度): 14.11486479935094
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In recent years, the fine-tuned generative models have been proven more powerful than the previous tagging-based or span-based models on named entity recognition (NER) task. It has also been found that the information related to entities, such as entity types, can prompt a model to achieve NER better. However, it is not easy to determine the entity types indeed existing in the given sentence in advance, and inputting too many potential entity types would distract the model inevitably. To exploit entity types' merit on promoting NER task, in this paper we propose a novel NER framework, namely ToNER based on a generative model. In ToNER, a type matching model is proposed at first to identify the entity types most likely to appear in the sentence. Then, we append a multiple binary classification task to fine-tune the generative model's encoder, so as to generate the refined representation of the input sentence. Moreover, we add an auxiliary task for the model to discover the entity types which further fine-tunes the model to output more accurate results. Our extensive experiments on some NER benchmarks verify the effectiveness of our proposed strategies in ToNER that are oriented towards entity types' exploitation.
- Abstract(参考訳): 近年、微調整された生成モデルは、名前付きエンティティ認識(NER)タスクにおける以前のタグ付けベースまたはスパンベースモデルよりも強力であることが証明されている。
また、エンティティタイプのようなエンティティに関連する情報は、モデルにNERをより良く達成するよう促すことも見出されている。
しかし、与えられた文の中に実際に存在するエンティティタイプを事前に判断するのは簡単ではなく、潜在的なエンティティタイプを多すぎると、必然的にモデルを混乱させてしまう。
本稿では,NERタスクの促進におけるエンティティタイプのメリットを活用するために,生成モデルに基づく新しいNERフレームワーク,すなわちToNERを提案する。
ToNERでは、文中に最も現れる可能性が最も高いエンティティタイプを特定するために、最初は型マッチングモデルが提案されている。
次に、生成モデルのエンコーダを微調整するために複数のバイナリ分類タスクを追加し、入力文の洗練された表現を生成する。
さらに、モデルがより正確な結果を出力するために、モデルをさらに微調整するエンティティタイプを見つけるための補助的なタスクを追加します。
いくつかのNERベンチマークに関する広範な実験により、エンティティタイプの利用を指向したToNERにおける提案した戦略の有効性が検証された。
関連論文リスト
- Hybrid Multi-stage Decoding for Few-shot NER with Entity-aware Contrastive Learning [32.62763647036567]
名前付きエンティティ認識は、ラベル付けされたいくつかの例に基づいて、新しいタイプの名前付きエンティティを識別できる。
MsFNER(Entity-Aware Contrastive Learning)を用いたFew-shot NERのためのハイブリッド多段復号法を提案する。
MsFNERは一般的なNERを、エンティティスパン検出とエンティティ分類の2つのステージに分割する。
論文 参考訳(メタデータ) (2024-04-10T12:31:09Z) - Entity Disambiguation via Fusion Entity Decoding [68.77265315142296]
より詳細なエンティティ記述を持つエンティティを曖昧にするためのエンコーダ・デコーダモデルを提案する。
GERBILベンチマークでは、EntQAと比較して、エンド・ツー・エンドのエンティティリンクが+1.5%改善されている。
論文 参考訳(メタデータ) (2024-04-02T04:27:54Z) - NERetrieve: Dataset for Next Generation Named Entity Recognition and
Retrieval [49.827932299460514]
我々は、大きな言語モデルによって提供される能力は、NER研究の終わりではなく、むしろエキサイティングな始まりであると主張する。
我々は、NERタスクの3つの変種と、それらをサポートするデータセットを示す。
500のエンティティタイプをカバーする400万段落の,大規模で銀の注釈付きコーパスを提供する。
論文 参考訳(メタデータ) (2023-10-22T12:23:00Z) - MProto: Multi-Prototype Network with Denoised Optimal Transport for
Distantly Supervised Named Entity Recognition [75.87566793111066]
本稿では,DS-NERタスクのためのMProtoというノイズロスのプロトタイプネットワークを提案する。
MProtoは、各エンティティタイプを複数のプロトタイプで表現し、クラス内の分散を特徴付ける。
不完全なラベリングからノイズを緩和するために,新しい復号化最適輸送(DOT)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T13:02:34Z) - PromptNER: A Prompting Method for Few-shot Named Entity Recognition via
k Nearest Neighbor Search [56.81939214465558]
本稿では,近距離探索による数発NERの新規プロンプト法であるPromptNERを提案する。
我々は、エンティティカテゴリ情報を含むプロンプトを使用してラベルのプロトタイプを構築する。
Few-NERDデータセットとCrossNERデータセットの広範な実験により,本モデルが最先端手法よりも優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-05-20T15:47:59Z) - Multi-task Transformer with Relation-attention and Type-attention for
Named Entity Recognition [35.44123819012004]
名前付きエンティティ認識(NER)は自然言語処理において重要な研究課題である。
本稿では,エンティティ境界検出タスクを名前付きエンティティ認識タスクに組み込むマルチタスク変換器を提案する。
論文 参考訳(メタデータ) (2023-03-20T05:11:22Z) - Simple Questions Generate Named Entity Recognition Datasets [18.743889213075274]
この研究は、単純な自然言語の質問によってNERデータセットを自動的に生成する、要求対生成のアプローチを導入している。
我々のモデルは、4つの異なる領域にわたる6つのNERベンチマークにおいて、以前の弱い教師付きモデルよりも大幅に優れています。
自然言語でNERのニーズを定式化することで、アワードのようなきめ細かいエンティティタイプのためのNERモデルを構築することもできます。
論文 参考訳(メタデータ) (2021-12-16T11:44:38Z) - Injecting Entity Types into Entity-Guided Text Generation [39.96689831978859]
本稿では,デコードフェーズにおけるエンティティタイプをモデル化し,文脈的単語を正確に生成することを目的とする。
私たちのモデルは、エンティティ型をエンティティ参照生成のプロセスに注入するマルチステップデコーダを持っています。
2つの公開ニュースデータセットの実験では、既存の型埋め込み結合ベースラインよりも、型インジェクションのパフォーマンスが向上している。
論文 参考訳(メタデータ) (2020-09-28T15:19:28Z) - Interpretable Entity Representations through Large-Scale Typing [61.4277527871572]
本稿では,人間の読みやすいエンティティ表現を作成し,箱から高パフォーマンスを実現する手法を提案する。
我々の表現は、微粒な実体型に対する後続確率に対応するベクトルである。
特定のドメインに対して,学習に基づく方法で,型セットのサイズを縮小できることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:58:03Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
NERタスクをテストベッドとして、異なる視点から既存モデルの一般化挙動を分析する。
詳細な分析による実験は、既存のニューラルNERモデルのボトルネックを診断する。
本論文の副産物として,最近のNER論文の包括的要約を含むプロジェクトをオープンソース化した。
論文 参考訳(メタデータ) (2020-01-12T04:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。