論文の概要: FaceCat: Enhancing Face Recognition Security with a Unified Generative Model Framework
- arxiv url: http://arxiv.org/abs/2404.09193v1
- Date: Sun, 14 Apr 2024 09:01:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 15:07:53.715689
- Title: FaceCat: Enhancing Face Recognition Security with a Unified Generative Model Framework
- Title(参考訳): FaceCat: 統一生成モデルフレームワークによる顔認識セキュリティの強化
- Authors: Jiawei Chen, Xiao Yang, Yinpeng Dong, Hang Su, Jianteng Peng, Zhaoxia Yin,
- Abstract要約: 対面防止(FAS)と対向検出(FAD)は、顔認識システムの安全性を確保するための重要な技術であると考えられている。
顔生成モデルを事前学習モデルとして利用し,FASおよびFADの性能向上を図る。
- 参考スコア(独自算出の注目度): 30.823325635144908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face anti-spoofing (FAS) and adversarial detection (FAD) have been regarded as critical technologies to ensure the safety of face recognition systems. As a consequence of their limited practicality and generalization, some existing methods aim to devise a framework capable of concurrently detecting both threats to address the challenge. Nevertheless, these methods still encounter challenges of insufficient generalization and suboptimal robustness, potentially owing to the inherent drawback of discriminative models. Motivated by the rich structural and detailed features of face generative models, we propose FaceCat which utilizes the face generative model as a pre-trained model to improve the performance of FAS and FAD. Specifically, FaceCat elaborately designs a hierarchical fusion mechanism to capture rich face semantic features of the generative model. These features then serve as a robust foundation for a lightweight head, designed to execute FAS and FAD tasks simultaneously. As relying solely on single-modality data often leads to suboptimal performance, we further propose a novel text-guided multi-modal alignment strategy that utilizes text prompts to enrich feature representation, thereby enhancing performance. For fair evaluations, we build a comprehensive protocol with a wide range of 28 attack types to benchmark the performance. Extensive experiments validate the effectiveness of FaceCat generalizes significantly better and obtains excellent robustness against input transformations.
- Abstract(参考訳): 対面防止(FAS)と対向検出(FAD)は、顔認識システムの安全性を確保するための重要な技術であると考えられている。
実用性や一般化が限られているため、既存の手法では、両方の脅威を同時に検出できるフレームワークを考案し、課題に対処することを目的としている。
それでもこれらの手法は、識別モデル固有の欠点のため、一般化の不十分さと最適下限の堅牢性という課題に直面している。
顔生成モデルの豊富な構造的・詳細な特徴を動機として,顔生成モデルを事前学習モデルとして活用し,FASとFADの性能向上を図るFaceCatを提案する。
具体的には、FaceCatは階層的な融合機構を精巧に設計し、生成モデルの豊かな顔の意味的特徴を捉える。
これらの機能は、FASとFADタスクを同時に実行するように設計された軽量ヘッドの堅牢な基盤として機能する。
単一モダリティデータのみに頼っているため、テキストプロンプトを利用して特徴表現を豊かにし、性能を向上させる新しいテキスト誘導型マルチモーダルアライメント戦略を提案する。
公平な評価のために、我々は28種類の攻撃タイプを幅広く含む包括的プロトコルを構築し、性能をベンチマークする。
大規模な実験により、FaceCatの有効性は大幅に向上し、入力変換に対する優れた堅牢性が得られる。
関連論文リスト
- MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
フォトリアリスティック・フェイスジェネレーション手法の急速な発展は、社会やアカデミックにおいて大きな関心を集めている。
既存のアプローチは主に画像モダリティを用いて顔の偽造パターンをキャプチャするが、きめ細かいノイズやテキストのような他のモダリティは完全には探索されていない。
そこで本研究では,画像ノイズの多点にわたる包括的かつきめ細かなフォージェリートレースをマイニングする,MFCLIP(MF-modal Fine-fine-fine-fine-fine-fine CLIP)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-15T13:08:59Z) - DiffFAS: Face Anti-Spoofing via Generative Diffusion Models [27.533334690705733]
Face Anti-Spoofing (FAS) は、顔認証システム(FR)が提示攻撃を防ぐ上で重要な役割を担っている。
画像の品質変化に対応するために,ネットワークに入力された事前情報として品質を定量化するDiffFASフレームワークを提案する。
クロスドメインなFASデータセットとクロスアタックなFASデータセットに対する我々のフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2024-09-13T06:45:23Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - A visualization method for data domain changes in CNN networks and the optimization method for selecting thresholds in classification tasks [1.1118946307353794]
Face Anti-Spoofing (FAS) は、顔認識技術のセキュリティを維持する上で重要な役割を担っている。
偽造顔生成技術の台頭に伴い、デジタル編集された顔が反偽造に直面する課題がエスカレートしている。
本稿では,データセット上での予測結果を可視化することにより,モデルのトレーニング結果を直感的に反映する可視化手法を提案する。
論文 参考訳(メタデータ) (2024-04-19T03:12:17Z) - Fiducial Focus Augmentation for Facial Landmark Detection [4.433764381081446]
本稿では,モデルによる顔構造理解を高めるために,新しい画像強調手法を提案する。
我々は,Deep Canonical correlation Analysis (DCCA) に基づく損失を考慮した,シームズアーキテクチャに基づくトレーニング機構を採用している。
提案手法は,様々なベンチマークデータセットにおいて,最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2024-02-23T01:34:00Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - Separate-and-Enhance: Compositional Finetuning for Text2Image Diffusion
Models [58.46926334842161]
この研究は、注意力の低いアクティベーションスコアとマスクオーバーラップに関連する問題を指摘し、このような不一致の根本的な理由を照らしている。
本稿では,物体マスクの重なりを低減し,注目度を最大化する2つの新しい目的,分離損失とエンハンス損失を提案する。
提案手法は従来のテスト時間適応手法と異なり,拡張性と一般化性を高める重要なパラメータの微調整に重点を置いている。
論文 参考訳(メタデータ) (2023-12-10T22:07:42Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Dual-Attention GAN for Large-Pose Face Frontalization [59.689836951934694]
本稿では,フォトリアリスティック顔フロンダル化のためのDA-GAN(Dual-Attention Generative Adversarial Network)を提案する。
具体的には、ローカル機能と長距離依存関係を統合するために、自己アテンションベースのジェネレータが導入された。
顔領域の局所的特徴を強調するために,新しい顔認識に基づく識別器を適用した。
論文 参考訳(メタデータ) (2020-02-17T20:00:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。