論文の概要: FedDistill: Global Model Distillation for Local Model De-Biasing in Non-IID Federated Learning
- arxiv url: http://arxiv.org/abs/2404.09210v1
- Date: Sun, 14 Apr 2024 10:23:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 14:58:08.935998
- Title: FedDistill: Global Model Distillation for Local Model De-Biasing in Non-IID Federated Learning
- Title(参考訳): FedDistill:非IIDフェデレーション学習における局所モデル脱生物のためのグローバルモデル蒸留
- Authors: Changlin Song, Divya Saxena, Jiannong Cao, Yuqing Zhao,
- Abstract要約: フェデレートラーニング(FL)は、協調機械学習を可能にする新しいアプローチである。
FLは、クライアント間で均一に分散されていない(非ID)データのために、課題に直面します。
本稿では,グローバルモデルからローカルモデルへの知識伝達を促進するフレームワークであるFedDistillを紹介する。
- 参考スコア(独自算出の注目度): 10.641875933652647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a novel approach that allows for collaborative machine learning while preserving data privacy by leveraging models trained on decentralized devices. However, FL faces challenges due to non-uniformly distributed (non-iid) data across clients, which impacts model performance and its generalization capabilities. To tackle the non-iid issue, recent efforts have utilized the global model as a teaching mechanism for local models. However, our pilot study shows that their effectiveness is constrained by imbalanced data distribution, which induces biases in local models and leads to a 'local forgetting' phenomenon, where the ability of models to generalize degrades over time, particularly for underrepresented classes. This paper introduces FedDistill, a framework enhancing the knowledge transfer from the global model to local models, focusing on the issue of imbalanced class distribution. Specifically, FedDistill employs group distillation, segmenting classes based on their frequency in local datasets to facilitate a focused distillation process to classes with fewer samples. Additionally, FedDistill dissects the global model into a feature extractor and a classifier. This separation empowers local models with more generalized data representation capabilities and ensures more accurate classification across all classes. FedDistill mitigates the adverse effects of data imbalance, ensuring that local models do not forget underrepresented classes but instead become more adept at recognizing and classifying them accurately. Our comprehensive experiments demonstrate FedDistill's effectiveness, surpassing existing baselines in accuracy and convergence speed across several benchmark datasets.
- Abstract(参考訳): フェデレートラーニング(FL)は、分散デバイスでトレーニングされたモデルを活用することで、データのプライバシを保ちながら、コラボレーティブな機械学習を可能にする、新しいアプローチである。
しかし、FLは、一様でない分散データ(非ID)がクライアントに分散しているため、モデルの性能と一般化能力に影響を及ぼすため、課題に直面します。
非イド問題に対処するため、近年の取り組みでは、グローバルモデルをローカルモデルの学習メカニズムとして活用している。
しかし,本実験では,局所モデルに偏りを生じさせる不均衡なデータ分布によって,モデルが時間とともに劣化を一般化する「局所的忘れ」現象が生じることが示唆された。
本稿では,グローバルモデルからローカルモデルへの知識伝達を促進するフレームワークであるFedDistillを紹介する。
具体的には、FedDistillはグループ蒸留を採用し、局所的なデータセットの頻度に基づいてクラスを分割し、より少ないサンプルを持つクラスに集中的な蒸留プロセスを促進する。
さらに、FedDistillはグローバルモデルを特徴抽出器と分類器に分解する。
この分離により、より一般化されたデータ表現能力を持つローカルモデルが強化され、すべてのクラスにまたがるより正確な分類が保証される。
FedDistillはデータ不均衡の悪影響を緩和し、ローカルモデルが表現不足のクラスを忘れずに、そのクラスを正確に認識し分類する能力を高める。
我々はFedDistillの有効性を実証し、いくつかのベンチマークデータセットで既存のベースラインを超える精度と収束速度を示した。
関連論文リスト
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Federated Skewed Label Learning with Logits Fusion [23.062650578266837]
フェデレートラーニング(FL)は、ローカルデータを送信することなく、複数のクライアント間で共有モデルを協調的にトレーニングすることを目的としている。
本稿では,ロジットの校正により局所モデル間の最適化バイアスを補正するFedBalanceを提案する。
提案手法は最先端手法に比べて平均精度が13%高い。
論文 参考訳(メタデータ) (2023-11-14T14:37:33Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
クロスサイロフェデレーション学習(FL)は、データセンタに分散したデータセット上での機械学習モデルの開発を可能にする。
近年の研究では、現在のFLアルゴリズムは、分布シフトに直面した場合、局所的な性能とグローバルな性能のトレードオフに直面している。
地域とグローバルのパフォーマンスのトレードオフを最適化する新しいフェデレーションモデルスープ手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T00:07:29Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - The Best of Both Worlds: Accurate Global and Personalized Models through
Federated Learning with Data-Free Hyper-Knowledge Distillation [17.570719572024608]
FedHKD (Federated Hyper-Knowledge Distillation) は、クライアントがローカルモデルを訓練するために知識蒸留に依存する新しいFLアルゴリズムである。
他のKDベースのpFLメソッドとは異なり、FedHKDはパブリックデータセットに依存したり、サーバに生成モデルをデプロイしたりしない。
さまざまなシナリオにおける視覚的データセットに関する広範な実験を行い、FedHKDがパーソナライズおよびグローバルモデルパフォーマンスの両方において、大幅な改善を提供することを示した。
論文 参考訳(メタデータ) (2023-01-21T16:20:57Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Think Locally, Act Globally: Federated Learning with Local and Global
Representations [92.68484710504666]
フェデレートラーニング(Federated Learning)とは、複数のデバイスに分散したプライベートデータ上でモデルをトレーニングする手法である。
本稿では,各デバイス上でコンパクトな局所表現を共同で学習する新しいフェデレーション学習アルゴリズムを提案する。
また、プライバシが鍵となる実世界のモバイルデータから、パーソナライズされた気分予測のタスクを評価する。
論文 参考訳(メタデータ) (2020-01-06T12:40:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。