DreamScape: 3D Scene Creation via Gaussian Splatting joint Correlation Modeling
- URL: http://arxiv.org/abs/2404.09227v2
- Date: Tue, 12 Nov 2024 04:08:05 GMT
- Title: DreamScape: 3D Scene Creation via Gaussian Splatting joint Correlation Modeling
- Authors: Xuening Yuan, Hongyu Yang, Yueming Zhao, Di Huang,
- Abstract summary: We present DreamScape, a method for creating highly consistent 3D scenes solely from textual descriptions.
Our approach involves a 3D Gaussian Guide for scene representation, consisting of semantic primitives (objects) and their spatial transformations.
A progressive scale control is tailored during local object generation, ensuring that objects of different sizes and densities adapt to the scene.
- Score: 23.06464506261766
- License:
- Abstract: Recent progress in text-to-3D creation has been propelled by integrating the potent prior of Diffusion Models from text-to-image generation into the 3D domain. Nevertheless, generating 3D scenes characterized by multiple instances and intricate arrangements remains challenging. In this study, we present DreamScape, a method for creating highly consistent 3D scenes solely from textual descriptions, leveraging the strong 3D representation capabilities of Gaussian Splatting and the complex arrangement abilities of large language models (LLMs). Our approach involves a 3D Gaussian Guide ($3{DG^2}$) for scene representation, consisting of semantic primitives (objects) and their spatial transformations and relationships derived directly from text prompts using LLMs. This compositional representation allows for local-to-global optimization of the entire scene. A progressive scale control is tailored during local object generation, ensuring that objects of different sizes and densities adapt to the scene, which addresses training instability issue arising from simple blending in the subsequent global optimization stage. To mitigate potential biases of LLM priors, we model collision relationships between objects at the global level, enhancing physical correctness and overall realism. Additionally, to generate pervasive objects like rain and snow distributed extensively across the scene, we introduce a sparse initialization and densification strategy. Experiments demonstrate that DreamScape offers high usability and controllability, enabling the generation of high-fidelity 3D scenes from only text prompts and achieving state-of-the-art performance compared to other methods.
Related papers
- GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - RealmDreamer: Text-Driven 3D Scene Generation with Inpainting and Depth Diffusion [39.03289977892935]
RealmDreamer is a technique for generation of general forward-facing 3D scenes from text descriptions.
Our technique does not require video or multi-view data and can synthesize a variety of high-quality 3D scenes in different styles.
arXiv Detail & Related papers (2024-04-10T17:57:41Z) - Planner3D: LLM-enhanced graph prior meets 3D indoor scene explicit regularization [31.52569918586902]
3D scene synthesis has diverse applications across a spectrum of industries such as robotics, films, and video games.
In this paper, we aim at generating realistic and reasonable 3D indoor scenes from scene graph.
Our method achieves better 3D scene synthesis, especially in terms of scene-level fidelity.
arXiv Detail & Related papers (2024-03-19T15:54:48Z) - GALA3D: Towards Text-to-3D Complex Scene Generation via Layout-guided Generative Gaussian Splatting [52.150502668874495]
We present GALA3D, generative 3D GAussians with LAyout-guided control, for effective compositional text-to-3D generation.
GALA3D is a user-friendly, end-to-end framework for state-of-the-art scene-level 3D content generation and controllable editing.
arXiv Detail & Related papers (2024-02-11T13:40:08Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
We introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes.
First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes.
Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images.
arXiv Detail & Related papers (2024-02-05T19:00:45Z) - FMGS: Foundation Model Embedded 3D Gaussian Splatting for Holistic 3D Scene Understanding [11.118857208538039]
We present Foundation Model Embedded Gaussian Splatting (S), which incorporates vision-language embeddings of foundation models into 3D Gaussian Splatting (GS)
Results demonstrate remarkable multi-view semantic consistency, facilitating diverse downstream tasks, beating state-of-the-art methods by 10.2 percent on open-vocabulary language-based object detection.
This research explores the intersection of vision, language, and 3D scene representation, paving the way for enhanced scene understanding in uncontrolled real-world environments.
arXiv Detail & Related papers (2024-01-03T20:39:02Z) - SceneWiz3D: Towards Text-guided 3D Scene Composition [134.71933134180782]
Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets.
We introduce SceneWiz3D, a novel approach to synthesize high-fidelity 3D scenes from text.
arXiv Detail & Related papers (2023-12-13T18:59:30Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
We present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives.
Unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images.
We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points.
arXiv Detail & Related papers (2023-07-11T17:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.