論文の概要: PANet: A Physics-guided Parametric Augmentation Net for Image Dehazing by Hazing
- arxiv url: http://arxiv.org/abs/2404.09269v1
- Date: Sun, 14 Apr 2024 14:24:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 14:48:15.268069
- Title: PANet: A Physics-guided Parametric Augmentation Net for Image Dehazing by Hazing
- Title(参考訳): PANet:物理誘導型パラメトリック拡張ネット
- Authors: Chih-Ling Chang, Fu-Jen Tsai, Zi-Ling Huang, Lin Gu, Chia-Wen Lin,
- Abstract要約: 合成ヘイズ画像と実世界のヘイズ画像のドメインギャップは、現実的な環境でのデハージング性能を低下させる。
本研究では,光実写とクリーンなトレーニングペアを生成する物理誘導パラメトリック拡張ネットワーク(PANet)を提案する。
実験の結果,PANetは多様なリアルなハジーイメージを増強し,既存のハジーイメージベンチマークを拡張できることが示された。
- 参考スコア(独自算出の注目度): 33.39324790342096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image dehazing faces challenges when dealing with hazy images in real-world scenarios. A huge domain gap between synthetic and real-world haze images degrades dehazing performance in practical settings. However, collecting real-world image datasets for training dehazing models is challenging since both hazy and clean pairs must be captured under the same conditions. In this paper, we propose a Physics-guided Parametric Augmentation Network (PANet) that generates photo-realistic hazy and clean training pairs to effectively enhance real-world dehazing performance. PANet comprises a Haze-to-Parameter Mapper (HPM) to project hazy images into a parameter space and a Parameter-to-Haze Mapper (PHM) to map the resampled haze parameters back to hazy images. In the parameter space, we can pixel-wisely resample individual haze parameter maps to generate diverse hazy images with physically-explainable haze conditions unseen in the training set. Our experimental results demonstrate that PANet can augment diverse realistic hazy images to enrich existing hazy image benchmarks so as to effectively boost the performances of state-of-the-art image dehazing models.
- Abstract(参考訳): 画像のデハージングは、現実のシナリオで派手なイメージを扱う場合、課題に直面します。
合成ヘイズ画像と実世界のヘイズ画像のドメインギャップは、現実的な環境でのデハージング性能を低下させる。
しかしながら、デハジングモデルのトレーニングのために実際の画像データセットを収集することは困難である。
本稿では,リアルなデハージング性能を効果的に向上するために,光リアルなヘイジーとクリーンなトレーニングペアを生成する物理誘導型パラメトリック拡張ネットワーク(PANet)を提案する。
PANetは、ヘイズ画像をパラメータ空間に投影するHaze-to-Parameter Mapper(HPM)と、サンプル化したHazeパラメータをヘイズイメージにマッピングするパラメーター-to-Haze Mapper(PHM)を備える。
パラメータ空間では、個々のヘイズパラメータマップをピクセル的に再サンプリングして、トレーニングセットにない物理的に説明可能なヘイズ条件の多様なヘイズ画像を生成することができる。
実験の結果,PANetは多様なリアルなハジーイメージを拡張し,既存のハジーイメージベンチマークを充実させ,最先端のイメージデハージングモデルの性能を効果的に向上させることができることがわかった。
関連論文リスト
- LMHaze: Intensity-aware Image Dehazing with a Large-scale Multi-intensity Real Haze Dataset [14.141433473509826]
本稿では,大規模で高品質な実世界のデータセットLMHazeを紹介する。
LMHazeは、屋内および屋外の多様な環境で撮影された、ヘイズフリーとヘイズフリーの2つの画像で構成されている。
そこで本研究では,Mambaをベースとした混合実験モデルを提案する。
論文 参考訳(メタデータ) (2024-10-21T15:20:02Z) - HazeSpace2M: A Dataset for Haze Aware Single Image Dehazing [26.97153700921866]
本研究では HazeSpace2M データセットを紹介した。これは Haze 型分類によるデハージングを強化するために設計された 200 万以上の画像の集合である。
このデータセットを用いて, ヘイズ型分類手法を導入し, 特殊デハザーを用いてヘイズ画像の鮮明化を行う。
本手法は, 実生活におけるヘイズ画像の鮮明さを向上させるために, 型別脱ヘイズを適用する前に, ヘイズタイプを分類する。
論文 参考訳(メタデータ) (2024-09-25T23:47:25Z) - HazeCLIP: Towards Language Guided Real-World Image Dehazing [62.4454483961341]
既存の手法は、特に合成データセットにおいて、単一画像のデハージングにおいて顕著な性能を達成した。
本稿では,事前学習型デハジングネットワークの性能向上を目的とした言語誘導適応フレームワークHazeCLIPを紹介する。
論文 参考訳(メタデータ) (2024-07-18T17:18:25Z) - SynFog: A Photo-realistic Synthetic Fog Dataset based on End-to-end Imaging Simulation for Advancing Real-World Defogging in Autonomous Driving [48.27575423606407]
フォトリアリスティックな霧画像を生成するために,エンド・ツー・エンドのシミュレーションパイプラインを導入する。
我々は、スカイライトとアクティブな照明条件の両方を特徴とするSynFogという新しい合成霧データセットを提案する。
実験の結果,SynFogで訓練したモデルでは,視覚知覚と検出精度が優れていた。
論文 参考訳(メタデータ) (2024-03-25T18:32:41Z) - Dual-Scale Single Image Dehazing Via Neural Augmentation [29.019279446792623]
モデルベースとデータ駆動のアプローチを組み合わせることで,新しい単一画像デハージングアルゴリズムを導入する。
その結果,提案アルゴリズムは実世界および合成ヘイズ画像からヘイズをうまく除去できることが示唆された。
論文 参考訳(メタデータ) (2022-09-13T11:56:03Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
本稿では、異なるレンズからの同一シーンの歪み画像の補正結果が同一であるべきという重要な知見に基づいて、新しい自己監督画像補正法を提案する。
我々は、歪みパラメータから修正画像を生成し、再歪み画像を生成するために、微分可能なワープモジュールを利用する。
本手法は,教師付きベースライン法や代表的最先端手法と同等あるいはそれ以上の性能を実現する。
論文 参考訳(メタデータ) (2020-11-30T08:23:25Z) - Dehaze-GLCGAN: Unpaired Single Image De-hazing via Adversarial Training [3.5788754401889014]
単一画像デハジングのためのデハジンググローバルローカルサイクル一貫性生成適応ネットワーク(Dehaze-GLCGAN)を提案する。
3つのベンチマークデータセットに対する実験により、ネットワークはPSNRとSSIMの点で過去の作業より優れていたことが判明した。
論文 参考訳(メタデータ) (2020-08-15T02:43:00Z) - NH-HAZE: An Image Dehazing Benchmark with Non-Homogeneous Hazy and
Haze-Free Images [95.00583228823446]
NH-HAZEは非同質な現実的データセットであり、実写のヘイズフリー画像とそれに対応するヘイズフリー画像のペアである。
本研究は、NH-HAZEデータセットを用いて評価した、最先端の単一画像デハージング手法の客観的評価を示す。
論文 参考訳(メタデータ) (2020-05-07T15:50:37Z) - FD-GAN: Generative Adversarial Networks with Fusion-discriminator for
Single Image Dehazing [48.65974971543703]
画像デハージングのためのFusion-Discriminator (FD-GAN) を用いた完全エンドツーエンドのジェネレータネットワークを提案する。
我々のモデルは、より自然でリアルなデハズド画像を生成することができ、色歪みは少なく、アーティファクトも少ない。
実験により, 提案手法は, 公開合成データセットと実世界の画像の両方において, 最先端の性能に達することが示された。
論文 参考訳(メタデータ) (2020-01-20T04:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。