In My Perspective, In My Hands: Accurate Egocentric 2D Hand Pose and Action Recognition
- URL: http://arxiv.org/abs/2404.09308v2
- Date: Wed, 24 Jul 2024 08:43:36 GMT
- Title: In My Perspective, In My Hands: Accurate Egocentric 2D Hand Pose and Action Recognition
- Authors: Wiktor Mucha, Martin Kampel,
- Abstract summary: Action recognition is essential for egocentric video understanding, allowing automatic and continuous monitoring of Activities of Daily Living (ADLs) without user effort.
Existing literature focuses on 3D hand pose input, which requires computationally intensive depth estimation networks or wearing an uncomfortable depth sensor.
We introduce two novel approaches for 2D hand pose estimation, namely EffHandNet for single-hand estimation and EffHandEgoNet, tailored for an egocentric perspective.
- Score: 1.4732811715354455
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Action recognition is essential for egocentric video understanding, allowing automatic and continuous monitoring of Activities of Daily Living (ADLs) without user effort. Existing literature focuses on 3D hand pose input, which requires computationally intensive depth estimation networks or wearing an uncomfortable depth sensor. In contrast, there has been insufficient research in understanding 2D hand pose for egocentric action recognition, despite the availability of user-friendly smart glasses in the market capable of capturing a single RGB image. Our study aims to fill this research gap by exploring the field of 2D hand pose estimation for egocentric action recognition, making two contributions. Firstly, we introduce two novel approaches for 2D hand pose estimation, namely EffHandNet for single-hand estimation and EffHandEgoNet, tailored for an egocentric perspective, capturing interactions between hands and objects. Both methods outperform state-of-the-art models on H2O and FPHA public benchmarks. Secondly, we present a robust action recognition architecture from 2D hand and object poses. This method incorporates EffHandEgoNet, and a transformer-based action recognition method. Evaluated on H2O and FPHA datasets, our architecture has a faster inference time and achieves an accuracy of 91.32% and 94.43%, respectively, surpassing state of the art, including 3D-based methods. Our work demonstrates that using 2D skeletal data is a robust approach for egocentric action understanding. Extensive evaluation and ablation studies show the impact of the hand pose estimation approach, and how each input affects the overall performance.
Related papers
- SHARP: Segmentation of Hands and Arms by Range using Pseudo-Depth for Enhanced Egocentric 3D Hand Pose Estimation and Action Recognition [5.359837526794863]
Hand pose represents key information for action recognition in the egocentric perspective.
We propose to improve egocentric 3D hand pose estimation based on RGB frames only by using pseudo-depth images.
arXiv Detail & Related papers (2024-08-19T14:30:29Z) - Benchmarks and Challenges in Pose Estimation for Egocentric Hand Interactions with Objects [89.95728475983263]
holistic 3Dunderstanding of such interactions from egocentric views is important for tasks in robotics, AR/VR, action recognition and motion generation.
We design the HANDS23 challenge based on the AssemblyHands and ARCTIC datasets with carefully designed training and testing splits.
Based on the results of the top submitted methods and more recent baselines on the leaderboards, we perform a thorough analysis on 3D hand(-object) reconstruction tasks.
arXiv Detail & Related papers (2024-03-25T05:12:21Z) - Human Action Recognition in Egocentric Perspective Using 2D Object and
Hands Pose [2.0305676256390934]
Egocentric action recognition is essential for healthcare and assistive technology that relies on egocentric cameras.
This study explores the feasibility of using 2D hand and object pose information for egocentric action recognition.
arXiv Detail & Related papers (2023-06-08T12:15:16Z) - LG-Hand: Advancing 3D Hand Pose Estimation with Locally and Globally
Kinematic Knowledge [0.693939291118954]
We propose LG-Hand, a powerful method for 3D hand pose estimation.
We argue that kinematic information plays an important role, contributing to the performance of 3D hand pose estimation.
Our method achieves promising results on the First-Person Hand Action Benchmark dataset.
arXiv Detail & Related papers (2022-11-06T15:26:32Z) - 3D Interacting Hand Pose Estimation by Hand De-occlusion and Removal [85.30756038989057]
Estimating 3D interacting hand pose from a single RGB image is essential for understanding human actions.
We propose to decompose the challenging interacting hand pose estimation task and estimate the pose of each hand separately.
Experiments show that the proposed method significantly outperforms previous state-of-the-art interacting hand pose estimation approaches.
arXiv Detail & Related papers (2022-07-22T13:04:06Z) - Ego2HandsPose: A Dataset for Egocentric Two-hand 3D Global Pose
Estimation [0.0]
Ego2HandsPose is the first dataset that enables color-based two-hand 3D tracking in unseen domains.
We develop a set of parametric fitting algorithms to enable 1) 3D hand pose annotation using a single image, 2) automatic conversion from 2D to 3D hand poses and 3) accurate two-hand tracking with temporal consistency.
arXiv Detail & Related papers (2022-06-10T07:50:45Z) - 3D Hand Pose and Shape Estimation from RGB Images for Improved
Keypoint-Based Hand-Gesture Recognition [25.379923604213626]
This paper presents a keypoint-based end-to-end framework for the 3D hand and pose estimation.
It is successfully applied to the hand-gesture recognition task as a study case.
arXiv Detail & Related papers (2021-09-28T17:07:43Z) - Learning to Disambiguate Strongly Interacting Hands via Probabilistic
Per-pixel Part Segmentation [84.28064034301445]
Self-similarity, and the resulting ambiguities in assigning pixel observations to the respective hands, is a major cause of the final 3D pose error.
We propose DIGIT, a novel method for estimating the 3D poses of two interacting hands from a single monocular image.
We experimentally show that the proposed approach achieves new state-of-the-art performance on the InterHand2.6M dataset.
arXiv Detail & Related papers (2021-07-01T13:28:02Z) - H2O: Two Hands Manipulating Objects for First Person Interaction
Recognition [70.46638409156772]
We present a comprehensive framework for egocentric interaction recognition using markerless 3D annotations of two hands manipulating objects.
Our method produces annotations of the 3D pose of two hands and the 6D pose of the manipulated objects, along with their interaction labels for each frame.
Our dataset, called H2O (2 Hands and Objects), provides synchronized multi-view RGB-D images, interaction labels, object classes, ground-truth 3D poses for left & right hands, 6D object poses, ground-truth camera poses, object meshes and scene point clouds.
arXiv Detail & Related papers (2021-04-22T17:10:42Z) - Joint Hand-object 3D Reconstruction from a Single Image with
Cross-branch Feature Fusion [78.98074380040838]
We propose to consider hand and object jointly in feature space and explore the reciprocity of the two branches.
We employ an auxiliary depth estimation module to augment the input RGB image with the estimated depth map.
Our approach significantly outperforms existing approaches in terms of the reconstruction accuracy of objects.
arXiv Detail & Related papers (2020-06-28T09:50:25Z) - Measuring Generalisation to Unseen Viewpoints, Articulations, Shapes and
Objects for 3D Hand Pose Estimation under Hand-Object Interaction [137.28465645405655]
HANDS'19 is a challenge to evaluate the abilities of current 3D hand pose estimators (HPEs) to interpolate and extrapolate the poses of a training set.
We show that the accuracy of state-of-the-art methods can drop, and that they fail mostly on poses absent from the training set.
arXiv Detail & Related papers (2020-03-30T19:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.