The intelligent prediction and assessment of financial information risk in the cloud computing model
- URL: http://arxiv.org/abs/2404.09322v1
- Date: Sun, 14 Apr 2024 18:42:20 GMT
- Title: The intelligent prediction and assessment of financial information risk in the cloud computing model
- Authors: Yufu Wang, Mingwei Zhu, Jiaqiang Yuan, Guanghui Wang, Hong Zhou,
- Abstract summary: This report explores the intersection of cloud computing and financial information processing.
It discusses the need for intelligent solutions to enhance data processing efficiency and accuracy while addressing security and privacy concerns.
It proposes policy recommendations to mitigate concentration risks associated with cloud computing in the financial industry.
- Score: 8.381780312169049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cloud computing (cloud computing) is a kind of distributed computing, referring to the network "cloud" will be a huge data calculation and processing program into countless small programs, and then, through the system composed of multiple servers to process and analyze these small programs to get the results and return to the user. This report explores the intersection of cloud computing and financial information processing, identifying risks and challenges faced by financial institutions in adopting cloud technology. It discusses the need for intelligent solutions to enhance data processing efficiency and accuracy while addressing security and privacy concerns. Drawing on regulatory frameworks, the report proposes policy recommendations to mitigate concentration risks associated with cloud computing in the financial industry. By combining intelligent forecasting and evaluation technologies with cloud computing models, the study aims to provide effective solutions for financial data processing and management, facilitating the industry's transition towards digital transformation.
Related papers
- How to integrate cloud service, data analytic and machine learning technique to reduce cyber risks associated with the modern cloud based infrastructure [0.0]
Combination of cloud technology, machine learning, and data visualization techniques allows hybrid enterprise networks to hold massive volumes of data.
Traditional security technologies are unable to cope with the rapid data explosion in cloud platforms.
Machine learning powered security solutions and data visualization techniques are playing instrumental roles in detecting security threat, data breaches, and automatic finding software vulnerabilities.
arXiv Detail & Related papers (2024-05-19T16:10:03Z) - Driving Intelligent IoT Monitoring and Control through Cloud Computing and Machine Learning [3.134387323162717]
This article explores how to drive intelligent iot monitoring and control through cloud computing and machine learning.
The paper also introduces the development of iot monitoring and control technology, the application of edge computing in iot monitoring and control, and the role of machine learning in data analysis and fault detection.
arXiv Detail & Related papers (2024-03-26T20:59:48Z) - Application of Machine Learning Optimization in Cloud Computing Resource
Scheduling and Management [18.462300407761873]
The scale of cloud computing in China has reached 209.1 billion yuan.
This paper proposes an innovative approach to solve complex problems in cloud computing resource scheduling and management.
arXiv Detail & Related papers (2024-02-27T05:14:27Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Towards Confidential Computing: A Secure Cloud Architecture for Big Data
Analytics and AI [0.0]
Cloud computing has become a viable solution for big data analytics and artificial intelligence.
Data security in certain fields such as biomedical research remains a major concern when moving to cloud.
arXiv Detail & Related papers (2023-05-28T16:08:44Z) - Scalable, Distributed AI Frameworks: Leveraging Cloud Computing for
Enhanced Deep Learning Performance and Efficiency [0.0]
In recent years, the integration of artificial intelligence (AI) and cloud computing has emerged as a promising avenue for addressing the growing computational demands of AI applications.
This paper presents a comprehensive study of scalable, distributed AI frameworks leveraging cloud computing for enhanced deep learning performance and efficiency.
arXiv Detail & Related papers (2023-04-26T15:38:00Z) - Outsourcing Training without Uploading Data via Efficient Collaborative
Open-Source Sampling [49.87637449243698]
Traditional outsourcing requires uploading device data to the cloud server.
We propose to leverage widely available open-source data, which is a massive dataset collected from public and heterogeneous sources.
We develop a novel strategy called Efficient Collaborative Open-source Sampling (ECOS) to construct a proximal proxy dataset from open-source data for cloud training.
arXiv Detail & Related papers (2022-10-23T00:12:18Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
We conduct a systematic review for both cloud and edge AI.
We are the first to set up the collaborative learning mechanism for cloud and edge modeling.
We discuss potentials and practical experiences of some on-going advanced edge AI topics.
arXiv Detail & Related papers (2021-11-11T05:58:23Z) - Auto-Split: A General Framework of Collaborative Edge-Cloud AI [49.750972428032355]
This paper describes the techniques and engineering practice behind Auto-Split, an edge-cloud collaborative prototype of Huawei Cloud.
To the best of our knowledge, there is no existing industry product that provides the capability of Deep Neural Network (DNN) splitting.
arXiv Detail & Related papers (2021-08-30T08:03:29Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
This paper introduces a novel distributed architecture for deep-learning-as-a-service.
It is able to preserve the user sensitive data while providing Cloud-based machine and deep learning services.
arXiv Detail & Related papers (2020-03-30T15:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.