How to integrate cloud service, data analytic and machine learning technique to reduce cyber risks associated with the modern cloud based infrastructure
- URL: http://arxiv.org/abs/2405.11601v1
- Date: Sun, 19 May 2024 16:10:03 GMT
- Title: How to integrate cloud service, data analytic and machine learning technique to reduce cyber risks associated with the modern cloud based infrastructure
- Authors: Upakar Bhatta,
- Abstract summary: Combination of cloud technology, machine learning, and data visualization techniques allows hybrid enterprise networks to hold massive volumes of data.
Traditional security technologies are unable to cope with the rapid data explosion in cloud platforms.
Machine learning powered security solutions and data visualization techniques are playing instrumental roles in detecting security threat, data breaches, and automatic finding software vulnerabilities.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The combination of cloud technology, machine learning, and data visualization techniques allows hybrid enterprise networks to hold massive volumes of data and provide employees and customers easy access to these cloud data. These massive collections of complex data sets are facing security challenges. While cloud platforms are more vulnerable to security threats and traditional security technologies are unable to cope with the rapid data explosion in cloud platforms, machine learning powered security solutions and data visualization techniques are playing instrumental roles in detecting security threat, data breaches, and automatic finding software vulnerabilities. The purpose of this paper is to present some of the widely used cloud services, machine learning techniques and data visualization approach and demonstrate how to integrate cloud service, data analytic and machine learning techniques that can be used to detect and reduce cyber risks associated with the modern cloud based infrastructure. In this paper I applied the machine learning supervised classifier to design a model based on well-known UNSW-NB15 dataset to predict the network behavior metrics and demonstrated how data analytics techniques can be integrated to visualize network traffics.
Related papers
- Enhancing Critical Infrastructure Cybersecurity: Collaborative DNN Synthesis in the Cloud Continuum [0.0]
Researchers are exploring the integration of IoT and the cloud continuum, together with AI, to enhance the cost-effectiveness and efficiency of critical infrastructure (CI) systems.
This integration, however, increases susceptibility of CI systems to cyberattacks, potentially leading to disruptions like power outages, oil spills, or even a nuclear mishap.
We propose an innovative approach that utilizes trained edge cloud models to synthesize central cloud models.
arXiv Detail & Related papers (2024-05-23T00:36:45Z) - Driving Intelligent IoT Monitoring and Control through Cloud Computing and Machine Learning [3.134387323162717]
This article explores how to drive intelligent iot monitoring and control through cloud computing and machine learning.
The paper also introduces the development of iot monitoring and control technology, the application of edge computing in iot monitoring and control, and the role of machine learning in data analysis and fault detection.
arXiv Detail & Related papers (2024-03-26T20:59:48Z) - Leveraging AI Planning For Detecting Cloud Security Vulnerabilities [15.503757553097387]
Cloud computing services provide scalable and cost-effective solutions for data storage, processing, and collaboration.
Access control misconfigurations are often the primary driver for cloud attacks.
We develop a PDDL model for detecting security vulnerabilities which can for example lead to widespread attacks such as ransomware.
arXiv Detail & Related papers (2024-02-16T03:28:02Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - A Review of Machine Learning-based Security in Cloud Computing [5.384804060261833]
Cloud Computing (CC) is revolutionizing the way IT resources are delivered to users, allowing them to access and manage their systems with increased cost-effectiveness and simplified infrastructure.
With the growth of CC comes a host of security risks, including threats to availability, integrity, and confidentiality.
Machine Learning (ML) is increasingly being used by Cloud Service Providers (CSPs) to reduce the need for human intervention in identifying and resolving security issues.
arXiv Detail & Related papers (2023-09-10T01:52:23Z) - Integrating Homomorphic Encryption and Trusted Execution Technology for
Autonomous and Confidential Model Refining in Cloud [4.21388107490327]
Homomorphic encryption and trusted execution environment technology can protect confidentiality for autonomous computation.
We propose to integrate these two techniques in the design of the model refining scheme.
arXiv Detail & Related papers (2023-08-02T06:31:41Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
We conduct a systematic review for both cloud and edge AI.
We are the first to set up the collaborative learning mechanism for cloud and edge modeling.
We discuss potentials and practical experiences of some on-going advanced edge AI topics.
arXiv Detail & Related papers (2021-11-11T05:58:23Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
This paper introduces a novel distributed architecture for deep-learning-as-a-service.
It is able to preserve the user sensitive data while providing Cloud-based machine and deep learning services.
arXiv Detail & Related papers (2020-03-30T15:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.