Machine learning-based identification of Gaia astrometric exoplanet orbits
- URL: http://arxiv.org/abs/2404.09350v1
- Date: Sun, 14 Apr 2024 20:17:14 GMT
- Title: Machine learning-based identification of Gaia astrometric exoplanet orbits
- Authors: Johannes Sahlmann, Pablo Gómez,
- Abstract summary: Third Gaia data release (DR3) contains $sim$170 000 astrometric orbit solutions of two-body systems located within $sim$500 pc of the Sun.
Several DR3 two-body systems with exoplanet, brown-dwarf, stellar, and black-hole components have been confirmed in this way.
We developed an alternative machine learning approach that uses only the DR3 orbital solutions with the aim of identifying the best candidates for exoplanets and brown-dwarf companions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The third Gaia data release (DR3) contains $\sim$170 000 astrometric orbit solutions of two-body systems located within $\sim$500 pc of the Sun. Determining component masses in these systems, in particular of stars hosting exoplanets, usually hinges on incorporating complementary observations in addition to the astrometry, e.g. spectroscopy and radial velocities. Several DR3 two-body systems with exoplanet, brown-dwarf, stellar, and black-hole components have been confirmed in this way. We developed an alternative machine learning approach that uses only the DR3 orbital solutions with the aim of identifying the best candidates for exoplanets and brown-dwarf companions. Based on confirmed substellar companions in the literature, we use semi-supervised anomaly detection methods in combination with extreme gradient boosting and random forest classifiers to determine likely low-mass outliers in the population of non-single sources. We employ and study feature importance to investigate the method's plausibility and produced a list of 22 best candidates of which four are exoplanet candidates and another five are either very-massive brown dwarfs or very-low mass stars. Three candidates, including one initial exoplanet candidate, correspond to false-positive solutions where longer-period binary star motion was fitted with a biased shorter-period orbit. We highlight nine candidates with brown-dwarf companions for preferential follow-up. One candidate companion around the Sun-like star G 15-6 could be confirmed as a genuine brown dwarf using external radial-velocity data. This new approach is a powerful complement to the traditional identification methods for substellar companions among Gaia astrometric orbits. It is particularly relevant in the context of Gaia DR4 and its expected exoplanet discovery yield.
Related papers
- Inferring Kernel $ε$-Machines: Discovering Structure in Complex Systems [49.1574468325115]
We introduce causal diffusion components that encode the kernel causal-state estimates as a set of coordinates in a reduced dimension space.
We show how each component extracts predictive features from data and demonstrate their application on four examples.
arXiv Detail & Related papers (2024-10-01T21:14:06Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Exoplanets Prediction in Multi-Planetary Systems and Determining the
Correlation Between the Parameters of Planets and Host Stars Using Artificial
Intelligence [0.0]
We search for additional exoplanets in 229 multi-planetary systems that house at least three or more confirmed planets.
We employ efficient machine learning approaches to analyze a dataset comprising 762 confirmed exoplanets and eight Solar System planets.
For giant planets, we observe a strong correlation between planetary radius and the mass of their host stars, which might provide intriguing insights into the relationship between giant planet formation and stellar characteristics.
arXiv Detail & Related papers (2024-02-27T21:28:08Z) - DBNets: A publicly available deep learning tool to measure the masses of
young planets in dusty protoplanetary discs [49.1574468325115]
We develop DBNets, a tool to quickly infer the mass of allegedly embedded planets from protoplanetary discs.
We extensively tested our tool on out-of-distribution data.
DBNets can identify inputs strongly outside its training scope returning an uncertainty above a specific threshold.
It can be reliably applied only on discs observed with inclinations below approximately 60deg, in the optically thin regime.
arXiv Detail & Related papers (2024-02-19T19:00:09Z) - Machine learning methods for the search for L&T brown dwarfs in the data
of modern sky surveys [67.17190225886465]
Brown dwarfs (BD) should account for up to 25 percent of all objects in the Galaxy.
Due to their weakness, spectral studies of brown dwarfs are rather laborious.
Numerous attempts have been made to search for and create a set of brown dwarfs using their colours as a decision rule.
arXiv Detail & Related papers (2023-08-06T08:14:35Z) - Revisiting mass-radius relationships for exoplanet populations: a
machine learning insight [0.0]
We employ efficient machine learning approaches to analyze a dataset comprising 762 confirmed exoplanets and eight Solar System planets.
By applying different unsupervised clustering algorithms, we classify the data into two main classes:'small' and 'giant' planets.
Our analysis highlights that planetary mass, orbital period, and stellar mass play crucial roles in predicting exoplanet radius.
arXiv Detail & Related papers (2023-01-17T19:15:06Z) - ExoSGAN and ExoACGAN: Exoplanet Detection using Adversarial Training
Algorithms [0.0]
We use two variations of generative adversarial networks to detect transiting exoplanets in K2 data.
Our techniques are able to categorize the light curves with a recall and precision of 1.00 on the test data.
arXiv Detail & Related papers (2022-07-20T05:45:36Z) - Automation Of Transiting Exoplanet Detection, Identification and
Habitability Assessment Using Machine Learning Approaches [0.0]
We analyze the light intensity curves from stars captured by the Kepler telescope to detect the potential curves that exhibit the characteristics of an existence of a possible planetary system.
We address the automation of exoplanet identification and habitability determination by leveraging several state-of-art machine learning and ensemble approaches.
arXiv Detail & Related papers (2021-12-06T19:00:12Z) - Analyzing the Stability of Non-coplanar Circumbinary Planets using
Machine Learning [0.0]
We analyze orbital stability of exoplanets in non-coplanar circumbinary systems using a numerical simulation method.
We train a machine learning model that can quickly determine the stability of the circumbinary planetary systems.
Our results indicate that larger inclinations of the planet tend to increase the stability of its orbit, but change in the planet's mass range between Earth and Jupiter has little effect on the stability of the system.
arXiv Detail & Related papers (2021-01-07T00:59:31Z) - Exploration in two-stage recommender systems [79.50534282841618]
Two-stage recommender systems are widely adopted in industry due to their scalability and maintainability.
A key challenge of this setup is that optimal performance of each stage in isolation does not imply optimal global performance.
We propose a method of synchronising the exploration strategies between the ranker and the nominators.
arXiv Detail & Related papers (2020-09-01T16:52:51Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.