Inferring Kernel $ε$-Machines: Discovering Structure in Complex Systems
- URL: http://arxiv.org/abs/2410.01076v1
- Date: Tue, 1 Oct 2024 21:14:06 GMT
- Title: Inferring Kernel $ε$-Machines: Discovering Structure in Complex Systems
- Authors: Alexandra M. Jurgens, Nicolas Brodu,
- Abstract summary: We introduce causal diffusion components that encode the kernel causal-state estimates as a set of coordinates in a reduced dimension space.
We show how each component extracts predictive features from data and demonstrate their application on four examples.
- Score: 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previously, we showed that computational mechanic's causal states -- predictively-equivalent trajectory classes for a stochastic dynamical system -- can be cast into a reproducing kernel Hilbert space. The result is a widely-applicable method that infers causal structure directly from very different kinds of observations and systems. Here, we expand this method to explicitly introduce the causal diffusion components it produces. These encode the kernel causal-state estimates as a set of coordinates in a reduced dimension space. We show how each component extracts predictive features from data and demonstrate their application on four examples: first, a simple pendulum -- an exactly solvable system; second, a molecular-dynamic trajectory of $n$-butane -- a high-dimensional system with a well-studied energy landscape; third, the monthly sunspot sequence -- the longest-running available time series of direct observations; and fourth, multi-year observations of an active crop field -- a set of heterogeneous observations of the same ecosystem taken for over a decade. In this way, we demonstrate that the empirical kernel causal-states algorithm robustly discovers predictive structures for systems with widely varying dimensionality and stochasticity.
Related papers
- Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Random Feature Models for Learning Interacting Dynamical Systems [2.563639452716634]
We consider the problem of constructing a data-based approximation of the interacting forces directly from noisy observations of the paths of the agents in time.
The learned interaction kernels are then used to predict the agents behavior over a longer time interval.
In addition, imposing sparsity reduces the kernel evaluation cost which significantly lowers the simulation cost for forecasting the multi-agent systems.
arXiv Detail & Related papers (2022-12-11T20:09:36Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
We study reinforcement learning for partially observed decision processes (POMDPs) with infinite observation and state spaces.
We make the first attempt at partial observability and function approximation for a class of POMDPs with a linear structure.
arXiv Detail & Related papers (2022-04-20T21:15:38Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Discovering Causal Structure with Reproducing-Kernel Hilbert Space
$\epsilon$-Machines [0.0]
We present a method that infers causal structure directly from observations of a system's behaviors.
The method robustly estimates causal structure in the presence of varying external and measurement noise levels.
arXiv Detail & Related papers (2020-11-23T23:41:16Z) - Learning interaction kernels in mean-field equations of 1st-order
systems of interacting particles [1.776746672434207]
We introduce a nonparametric algorithm to learn interaction kernels of mean-field equations for 1st-order systems of interacting particles.
By at least squares with regularization, the algorithm learns the kernel on data-adaptive hypothesis spaces efficiently.
arXiv Detail & Related papers (2020-10-29T15:37:17Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Learning interaction kernels in stochastic systems of interacting
particles from multiple trajectories [13.3638879601361]
We consider systems of interacting particles or agents, with dynamics determined by an interaction kernel.
We introduce a nonparametric inference approach to this inverse problem, based on a regularized maximum likelihood estimator.
We show that a coercivity condition enables us to control the condition number of this problem and prove the consistency of our estimator.
arXiv Detail & Related papers (2020-07-30T01:28:06Z) - The entanglement membrane in chaotic many-body systems [0.0]
In certain analytically-tractable quantum chaotic systems, the calculation of out-of-time-order correlation functions, entanglement entropies after a quench, and other related dynamical observables, reduces to an effective theory of an entanglement membrane'' in spacetime.
We show here how to make sense of this membrane in more realistic models, which do not involve an average over random unitaries.
arXiv Detail & Related papers (2019-12-27T19:01:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.