Integrating Marketing Channels into Quantile Transformation and Bayesian Optimization of Ensemble Kernels for Sales Prediction with Gaussian Process Models
- URL: http://arxiv.org/abs/2404.09386v2
- Date: Tue, 11 Jun 2024 01:59:25 GMT
- Title: Integrating Marketing Channels into Quantile Transformation and Bayesian Optimization of Ensemble Kernels for Sales Prediction with Gaussian Process Models
- Authors: Shahin Mirshekari, Negin Hayeri Motedayen, Mohammad Ensaf,
- Abstract summary: This study introduces an innovative Gaussian Process (GP) model utilizing an ensemble kernel that integrates Radial Basis Function (RBF), Rational Quadratic, and Mat'ern kernels for product sales forecasting.
By applying Bayesian optimization, we efficiently find the optimal weights for each kernel, enhancing the model's ability to handle complex sales data patterns.
Our approach significantly outperforms traditional GP models, achieving a notable 98% accuracy and superior performance across key metrics including Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination ($R2
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study introduces an innovative Gaussian Process (GP) model utilizing an ensemble kernel that integrates Radial Basis Function (RBF), Rational Quadratic, and Mat\'ern kernels for product sales forecasting. By applying Bayesian optimization, we efficiently find the optimal weights for each kernel, enhancing the model's ability to handle complex sales data patterns. Our approach significantly outperforms traditional GP models, achieving a notable 98\% accuracy and superior performance across key metrics including Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination ($R^2$). This advancement underscores the effectiveness of ensemble kernels and Bayesian optimization in improving predictive accuracy, offering profound implications for machine learning applications in sales forecasting.
Related papers
- Enhancing Predictive Accuracy in Pharmaceutical Sales Through An Ensemble Kernel Gaussian Process Regression Approach [0.20971479389679337]
This research employs Gaussian Process Regression (GPR) with an ensemble kernel to analyze pharmaceutical sales data.
The ensemble kernel demonstrated superior performance in predictive accuracy, achieving an ( R2) score near 1.0, and significantly lower values in Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE)
These findings highlight the efficacy of ensemble kernels in GPR for predictive analytics in complex pharmaceutical sales datasets.
arXiv Detail & Related papers (2024-04-15T00:25:10Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
A body of work has been done to automate machine learning algorithm to highlight the importance of model choice.
The necessity to solve the analytical tractability and the computational feasibility in a idealistic fashion enables to ensure the efficiency and the applicability.
arXiv Detail & Related papers (2021-08-27T19:03:32Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Gaussian Process Boosting [13.162429430481982]
We introduce a novel way to combine boosting with Gaussian process and mixed effects models.
We obtain increased prediction accuracy compared to existing approaches on simulated and real-world data sets.
arXiv Detail & Related papers (2020-04-06T13:19:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.