Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows
- URL: http://arxiv.org/abs/2305.18910v2
- Date: Wed, 1 Nov 2023 10:07:04 GMT
- Title: Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows
- Authors: Alexandre Verine, Benjamin Negrevergne, Muni Sreenivas Pydi, Yann
Chevaleyre
- Abstract summary: We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
- Score: 54.050498411883495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving a balance between image quality (precision) and diversity (recall)
is a significant challenge in the domain of generative models. Current
state-of-the-art models primarily rely on optimizing heuristics, such as the
Fr\'echet Inception Distance. While recent developments have introduced
principled methods for evaluating precision and recall, they have yet to be
successfully integrated into the training of generative models. Our main
contribution is a novel training method for generative models, such as
Generative Adversarial Networks and Normalizing Flows, which explicitly
optimizes a user-defined trade-off between precision and recall. More
precisely, we show that achieving a specified precision-recall trade-off
corresponds to minimizing a unique $f$-divergence from a family we call the
\textit{PR-divergences}. Conversely, any $f$-divergence can be written as a
linear combination of PR-divergences and corresponds to a weighted
precision-recall trade-off. Through comprehensive evaluations, we show that our
approach improves the performance of existing state-of-the-art models like
BigGAN in terms of either precision or recall when tested on datasets such as
ImageNet.
Related papers
- Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
We propose approximate Machine Unlearning algorithms to reduce the generation of specific types of images, characterized by samples from a forget distribution''
We then propose unlearning algorithms that demonstrate superior effectiveness in preserving model integrity compared to existing baselines.
arXiv Detail & Related papers (2024-11-04T13:15:28Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
We propose a methodology for finding sequences of machine learning models that are stable across retraining iterations.
We develop a mixed-integer optimization formulation that is guaranteed to recover optimal models.
Our method shows stronger stability than greedily trained models with a small, controllable sacrifice in predictive power.
arXiv Detail & Related papers (2024-03-28T22:45:38Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution.
By employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model.
arXiv Detail & Related papers (2023-05-11T17:55:25Z) - Training Normalizing Flows with the Precision-Recall Divergence [73.92251251511199]
We show that achieving a specified precision-recall trade-off corresponds to minimising -divergences from a family we call the em PR-divergences
We propose a novel generative model that is able to train a normalizing flow to minimise any -divergence, and in particular, achieve a given precision-recall trade-off.
arXiv Detail & Related papers (2023-02-01T17:46:47Z) - Deep Generative Modeling on Limited Data with Regularization by
Nontransferable Pre-trained Models [32.52492468276371]
We propose regularized deep generative model (Reg-DGM) to reduce the variance of generative modeling with limited data.
Reg-DGM uses a pre-trained model to optimize a weighted sum of a certain divergence and the expectation of an energy function.
Empirically, with various pre-trained feature extractors and a data-dependent energy function, Reg-DGM consistently improves the generation performance of strong DGMs with limited data.
arXiv Detail & Related papers (2022-08-30T10:28:50Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.