論文の概要: An Autoencoder-Based Constellation Design for AirComp in Wireless Federated Learning
- arxiv url: http://arxiv.org/abs/2404.09392v1
- Date: Mon, 15 Apr 2024 00:25:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 14:09:06.908518
- Title: An Autoencoder-Based Constellation Design for AirComp in Wireless Federated Learning
- Title(参考訳): 無線フェデレーション学習におけるAirCompのオートエンコーダによるコンステレーション設計
- Authors: Yujia Mu, Xizixiang Wei, Cong Shen,
- Abstract要約: ディジタル変調によるAirCompをサポートするエンドツーエンド通信システムを提案する。
我々は、オートエンコーダネットワーク構造を活用し、送信機と受信機コンポーネントの協調最適化を探索する。
- 参考スコア(独自算出の注目度): 8.255037356276341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wireless federated learning (FL) relies on efficient uplink communications to aggregate model updates across distributed edge devices. Over-the-air computation (a.k.a. AirComp) has emerged as a promising approach for addressing the scalability challenge of FL over wireless links with limited communication resources. Unlike conventional methods, AirComp allows multiple edge devices to transmit uplink signals simultaneously, enabling the parameter server to directly decode the average global model. However, existing AirComp solutions are intrinsically analog, while modern wireless systems predominantly adopt digital modulations. Consequently, careful constellation designs are necessary to accurately decode the sum model updates without ambiguity. In this paper, we propose an end-to-end communication system supporting AirComp with digital modulation, aiming to overcome the challenges associated with accurate decoding of the sum signal with constellation designs. We leverage autoencoder network structures and explore the joint optimization of transmitter and receiver components. Our approach fills an important gap in the context of accurately decoding the sum signal in digital modulation-based AirComp, which can advance the deployment of FL in contemporary wireless systems.
- Abstract(参考訳): 無線連合学習(FL)は、分散エッジデバイス間のモデル更新を集約するために、効率的なアップリンク通信に依存している。
オーバー・ザ・エア・コンピューティング(別名AirComp)は、限られた通信リソースを持つ無線リンクに対するFLのスケーラビリティ問題に対処するための有望なアプローチとして登場した。
従来の方法とは異なり、AirCompは複数のエッジデバイスが同時にアップリンク信号を送信でき、パラメータサーバは平均的なグローバルモデルを直接デコードできる。
しかし、既存のAirCompソリューションは本質的に類似しているが、現代の無線システムはデジタル変調を主に採用している。
したがって、和モデルの更新を曖昧さなく正確に復号するためには、注意深い星座設計が必要である。
本稿では,コンステレーション設計による和信号の正確な復号化に関わる課題を克服することを目的として,AirCompをディジタル変調でサポートするエンドツーエンド通信システムを提案する。
我々は、オートエンコーダネットワーク構造を活用し、送信機と受信機コンポーネントの協調最適化を探索する。
提案手法は,現在の無線システムにおけるFLの展開を推し進めるデジタル変調ベースのAirCompにおいて,和信号の正確な復号化という文脈において重要なギャップを埋めるものである。
関連論文リスト
- Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
無線ネットワーク制御システム(Wireless Networked Control Systems, WNCS)は、ドローン群や自律ロボットなどのアプリケーションにおいて柔軟な制御を可能にする産業用4.0に必須である。
本稿では,マルチ状態マルコフブロックフェーディングチャネル上で限られた無線リソースを共有するセンサやアクチュエータを用いて,複数の制御ループ間の相関ダイナミクスを捕捉する実用的WNCSモデルを提案する。
本研究では,ハイブリッドな動作空間を効率的に処理し,通信制御の相関関係を捉え,疎域変数や浮動小数点制御の入力に拘わらず堅牢なトレーニングを確実にするDeep Reinforcement Learning (DRL)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-10-15T06:28:21Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Digital Over-the-Air Federated Learning in Multi-Antenna Systems [30.137208705209627]
デジタル変調とオーバー・ザ・エア計算(AirComp)を用いた現実的な無線通信システム上でのフェデレーション学習(FL)の性能最適化について検討する。
本稿では,デジタル変調とAirCompを組み合わせたFedAvg(FedAvg)アルゴリズムを提案する。
人工ニューラルネットワーク(ANN)は、すべてのデバイスの局所FLモデルを推定し、将来のモデル伝送のためにPSのビーム形成行列を調整するために使用される。
論文 参考訳(メタデータ) (2023-02-04T07:26:06Z) - Over-the-Air Federated Learning with Retransmissions (Extended Version) [21.37147806100865]
資源制約のある無線ネットワーク上でのフェデレート学習(FL)の収束に対する推定誤差の影響について検討する。
資源制約のある無線ネットワーク上でFL収束を改善する手法として再送信を提案する。
論文 参考訳(メタデータ) (2021-11-19T15:17:15Z) - Relay-Assisted Cooperative Federated Learning [10.05493937334448]
オーバー・ザ・エアの計算により、モバイルデバイスはローカルモデルを同時にアップロードできる。
無線チャネルの消失により、エッジサーバにおけるモデル集約誤差は、すべてのデバイスの中で最も弱いチャネルに支配される。
本稿では,トラグラー問題に効果的に対処するリレー支援型協調型FL方式を提案する。
論文 参考訳(メタデータ) (2021-07-20T14:06:19Z) - Over-the-Air Decentralized Federated Learning [28.593149477080605]
本稿では,無線ネットワーク上での分散化フェデレーション学習(FL)について考察する。そこでは,デバイス間通信(D2D)におけるローカルモデルコンセンサスを促進するために,オーバー・ザ・エア計算(AirComp)が採用されている。
本稿では,D2D通信における事前符号化と復号化の両手法を組み込んだ,勾配追従型DSGD(DSGT-VR)アルゴリズムを提案する。
提案アルゴリズムは線形に収束し, チャネルのフェージングとノイズを考慮した, 強い凸関数と滑らかな損失関数の最適性ギャップを確立する。
論文 参考訳(メタデータ) (2021-06-15T09:42:33Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
本稿では,効率の良いエッジフェデレーション学習を実現するために,UM-AirCompフレームワークを提案する。
ローカルモデルパラメータを同時にアップロードし、アナログビームフォーミングを通じてグローバルモデルパラメータを更新する。
車両間自動運転シミュレーションプラットフォームにおけるUM-AirCompの実装を実演する。
論文 参考訳(メタデータ) (2021-01-28T15:10:22Z) - Convergence of Federated Learning over a Noisy Downlink [84.55126371346452]
我々は,遠隔パラメータサーバの助けを借りて,ローカルデータセットを利用してグローバルモデルを協調訓練するフェデレーション学習について検討した。
このフレームワークは、PSからデバイスへのダウンリンク送信と、デバイスからPSへのアップリンク送信を必要とする。
本研究の目的は、ダウンリンクとアップリンクの両方における帯域幅制限された共有無線媒体がFLの性能に与える影響を検討することである。
論文 参考訳(メタデータ) (2020-08-25T16:15:05Z) - Cluster-Based Cooperative Digital Over-the-Air Aggregation for Wireless
Federated Edge Learning [9.179817518536545]
空気上計算(AirComp)を用いた無線エッジにおける連合学習システムについて検討する。
このようなシステムでは、ユーザは、高速なモデルアグリゲーションを実現するために、マルチアクセスチャネル上でメッセージを同時に送信する。
本稿では,ユーザが位相補正を行い,全電力で送信する送信機の要求を緩和する改良されたディジタルAirComp方式を提案する。
論文 参考訳(メタデータ) (2020-08-03T16:29:52Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。