EQO: Exploring Ultra-Efficient Private Inference with Winograd-Based Protocol and Quantization Co-Optimization
- URL: http://arxiv.org/abs/2404.09404v1
- Date: Mon, 15 Apr 2024 01:41:18 GMT
- Title: EQO: Exploring Ultra-Efficient Private Inference with Winograd-Based Protocol and Quantization Co-Optimization
- Authors: Wenxuan Zeng, Tianshi Xu, Meng Li, Runsheng Wang,
- Abstract summary: Private convolutional neural network (CNN) inference based on secure two-party computation (2PC) suffers from high communication and latency overhead.
We propose EQO, a quantized 2PC inference framework that jointly optimize the CNNs and 2PC protocols.
With extensive experiments, EQO demonstrates 11.7x, 3.6x, and 6.3x communication reduction with 1.29%, 1.16%, and 1.29% higher accuracy compared to state-of-the-art frameworks SiRNN, COINN, and CoPriv, respectively.
- Score: 3.1330492824737055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Private convolutional neural network (CNN) inference based on secure two-party computation (2PC) suffers from high communication and latency overhead, especially from convolution layers. In this paper, we propose EQO, a quantized 2PC inference framework that jointly optimizes the CNNs and 2PC protocols. EQO features a novel 2PC protocol that combines Winograd transformation with quantization for efficient convolution computation. However, we observe naively combining quantization and Winograd convolution is sub-optimal: Winograd transformations introduce extensive local additions and weight outliers that increase the quantization bit widths and require frequent bit width conversions with non-negligible communication overhead. Therefore, at the protocol level, we propose a series of optimizations for the 2PC inference graph to minimize the communication. At the network level, We develop a sensitivity-based mixed-precision quantization algorithm to optimize network accuracy given communication constraints. We further propose a 2PC-friendly bit re-weighting algorithm to accommodate weight outliers without increasing bit widths. With extensive experiments, EQO demonstrates 11.7x, 3.6x, and 6.3x communication reduction with 1.29%, 1.16%, and 1.29% higher accuracy compared to state-of-the-art frameworks SiRNN, COINN, and CoPriv, respectively.
Related papers
- ECDQC: Efficient Compilation for Distributed Quantum Computing with Linear Layout [6.382954852270525]
We propose an efficient compilation method for distributed quantum computing (DQC) using the Linear Nearest Neighbor (LNN) architecture.
Our approach significantly decreases compilation time, gate count, and circuit depth, improving robustness for large-scale quantum computations.
arXiv Detail & Related papers (2024-10-31T12:07:46Z) - PrivQuant: Communication-Efficient Private Inference with Quantized Network/Protocol Co-Optimization [2.9203160719029073]
Existing secure 2PC frameworks suffer from a high inference latency due to enormous communication.
We propose PrivQuant, a framework that jointly optimize the 2PC-based quantized inference protocols and the network quantization algorithm.
We show PrivQuant reduces communication by $11times, 2.5times mathrmand 2.8times$, which results in $8.7times, 1.8times mathrmand 2.4times$ latency reduction compared with SiRNN, COINN, and CoPriv, respectively.
arXiv Detail & Related papers (2024-10-12T13:28:42Z) - HEQuant: Marrying Homomorphic Encryption and Quantization for
Communication-Efficient Private Inference [2.498379184732383]
We propose HEQuant, which features low-precision-quantization-aware optimization for the HE-based protocols.
Compared with prior-art HE-based protocols, e.g., CrypTFlow2, Cheetah, Iron, etc, HEQuant achieves $3.5sim 23.4times$ communication reduction.
arXiv Detail & Related papers (2024-01-29T08:59:05Z) - CoPriv: Network/Protocol Co-Optimization for Communication-Efficient Private Inference [13.039573608167077]
Deep neural network (DNN) inference based on secure 2-party (2PC) can offer cryptographically-secure privacy protection.
Previous works heavily rely on a proxy metric of ReLU counts to approximate the communication overhead.
We present CoPriv, a framework that jointly optimize the 2PC inference protocol and the DNN architecture.
arXiv Detail & Related papers (2023-11-03T06:19:48Z) - Compacting Binary Neural Networks by Sparse Kernel Selection [58.84313343190488]
This paper is motivated by a previously revealed phenomenon that the binary kernels in successful BNNs are nearly power-law distributed.
We develop the Permutation Straight-Through Estimator (PSTE) that is able to not only optimize the selection process end-to-end but also maintain the non-repetitive occupancy of selected codewords.
Experiments verify that our method reduces both the model size and bit-wise computational costs, and achieves accuracy improvements compared with state-of-the-art BNNs under comparable budgets.
arXiv Detail & Related papers (2023-03-25T13:53:02Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - OMPQ: Orthogonal Mixed Precision Quantization [64.59700856607017]
Mixed precision quantization takes advantage of hardware's multiple bit-width arithmetic operations to unleash the full potential of network quantization.
We propose to optimize a proxy metric, the concept of networkity, which is highly correlated with the loss of the integer programming.
This approach reduces the search time and required data amount by orders of magnitude, with little compromise on quantization accuracy.
arXiv Detail & Related papers (2021-09-16T10:59:33Z) - 1-bit LAMB: Communication Efficient Large-Scale Large-Batch Training
with LAMB's Convergence Speed [17.953619054149378]
We propose a new communication-efficient algorithm, 1-bit LAMB, which supports adaptive layerwise learning rates even when communication is compressed.
For BERT-Large pre-training task with batch sizes from 8K to 64K, our evaluations demonstrate that 1-bit LAMB with NCCL-based backend is able to achieve up to 4.6x communication volume reduction.
arXiv Detail & Related papers (2021-04-13T10:07:49Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
We present APQ for efficient deep learning inference on resource-constrained hardware.
Unlike previous methods that separately search the neural architecture, pruning policy, and quantization policy, we optimize them in a joint manner.
With the same accuracy, APQ reduces the latency/energy by 2x/1.3x over MobileNetV2+HAQ.
arXiv Detail & Related papers (2020-06-15T16:09:17Z) - XSepConv: Extremely Separated Convolution [60.90871656244126]
We propose a novel extremely separated convolutional block (XSepConv)
It fuses spatially separable convolutions into depthwise convolution to reduce both the computational cost and parameter size of large kernels.
XSepConv is designed to be an efficient alternative to vanilla depthwise convolution with large kernel sizes.
arXiv Detail & Related papers (2020-02-27T11:46:17Z) - Optimal Gradient Quantization Condition for Communication-Efficient
Distributed Training [99.42912552638168]
Communication of gradients is costly for training deep neural networks with multiple devices in computer vision applications.
In this work, we deduce the optimal condition of both the binary and multi-level gradient quantization for textbfANY gradient distribution.
Based on the optimal condition, we develop two novel quantization schemes: biased BinGrad and unbiased ORQ for binary and multi-level gradient quantization respectively.
arXiv Detail & Related papers (2020-02-25T18:28:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.