Human-in-the-Loop Segmentation of Multi-species Coral Imagery
- URL: http://arxiv.org/abs/2404.09406v2
- Date: Tue, 16 Apr 2024 05:58:39 GMT
- Title: Human-in-the-Loop Segmentation of Multi-species Coral Imagery
- Authors: Scarlett Raine, Ross Marchant, Brano Kusy, Frederic Maire, Niko Suenderhauf, Tobias Fischer,
- Abstract summary: Broad-scale marine surveys performed by underwater vehicles significantly increase the availability of coral reef imagery.
Point label propagation is an approach used to leverage existing image data labeled with sparse point labels.
The resulting augmented ground truth generated is then used to train a semantic segmentation model.
- Score: 3.3564744382205127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Broad-scale marine surveys performed by underwater vehicles significantly increase the availability of coral reef imagery, however it is costly and time-consuming for domain experts to label images. Point label propagation is an approach used to leverage existing image data labeled with sparse point labels. The resulting augmented ground truth generated is then used to train a semantic segmentation model. Here, we first demonstrate that recent advances in foundation models enable generation of multi-species coral augmented ground truth masks using denoised DINOv2 features and K-Nearest Neighbors (KNN), without the need for any pre-training or custom-designed algorithms. For extremely sparsely labeled images, we propose a labeling regime based on human-in-the-loop principles, resulting in significant improvement in annotation efficiency: If only 5 point labels per image are available, our proposed human-in-the-loop approach improves on the state-of-the-art by 17.3% for pixel accuracy and 22.6% for mIoU; and by 10.6% and 19.1% when 10 point labels per image are available. Even if the human-in-the-loop labeling regime is not used, the denoised DINOv2 features with a KNN outperforms the prior state-of-the-art by 3.5% for pixel accuracy and 5.7% for mIoU (5 grid points). We also provide a detailed analysis of how point labeling style and the quantity of points per image affects the point label propagation quality and provide general recommendations on maximizing point label efficiency.
Related papers
- Label Filling via Mixed Supervision for Medical Image Segmentation from Noisy Annotations [22.910649758574852]
We propose a simple yet effective Label Filling framework, termed as LF-Net.
It predicts the groundtruth segmentation label given only noisy annotations during training.
Results on five datasets show that our LF-Net boosts segmentation accuracy in all datasets compared with state-of-the-art methods.
arXiv Detail & Related papers (2024-10-21T14:36:36Z) - Adaptive Anchor Label Propagation for Transductive Few-Shot Learning [18.29463308334406]
Few-shot learning addresses the issue of classifying images using limited labeled data.
We propose a novel algorithm that adapts the feature embeddings of the labeled data by minimizing a differentiable loss function.
Our algorithm outperforms the standard label propagation algorithm by as much as 7% and 2% in the 1-shot and 5-shot settings respectively.
arXiv Detail & Related papers (2023-10-30T20:29:31Z) - Semantic Embedded Deep Neural Network: A Generic Approach to Boost
Multi-Label Image Classification Performance [10.257208600853199]
We introduce a generic semantic-embedding deep neural network to apply the spatial awareness semantic feature.
We observed an Avg.relative improvement of 15.27% in terms of AUC score across all labels compared to the baseline approach.
arXiv Detail & Related papers (2023-05-09T07:44:52Z) - Highly Accurate Dichotomous Image Segmentation [139.79513044546]
A new task called dichotomous image segmentation (DIS) aims to segment highly accurate objects from natural images.
We collect the first large-scale dataset, DIS5K, which contains 5,470 high-resolution (e.g., 2K, 4K or larger) images.
We also introduce a simple intermediate supervision baseline (IS-Net) using both feature-level and mask-level guidance for DIS model training.
arXiv Detail & Related papers (2022-03-06T20:09:19Z) - Measuring Self-Supervised Representation Quality for Downstream
Classification using Discriminative Features [56.89813105411331]
We study the representation space of state-of-the-art self-supervised models including SimCLR, SwaV, MoCo, BYOL, DINO, SimSiam, VICReg and Barlow Twins.
We propose Self-Supervised Representation Quality Score (or Q-Score), an unsupervised score that can reliably predict if a given sample is likely to be mis-classified.
Fine-tuning with Q-Score regularization can boost the linear probing accuracy of SSL models by up to 5.8% on ImageNet-100 and 3.7% on ImageNet-1K.
arXiv Detail & Related papers (2022-03-03T17:48:23Z) - Point Label Aware Superpixels for Multi-species Segmentation of
Underwater Imagery [4.195806160139487]
Monitoring coral reefs using underwater vehicles increases the range of marine surveys and availability of historical ecological data.
We propose a point label aware method for propagating labels within superpixel regions to obtain augmented ground truth for training a semantic segmentation model.
Our method outperforms prior methods on the UCSD Mosaics dataset by 3.62% for pixel accuracy and 8.35% for mean IoU for the label propagation task.
arXiv Detail & Related papers (2022-02-27T23:46:43Z) - Pseudo Pixel-level Labeling for Images with Evolving Content [5.573543601558405]
We propose a pseudo-pixel-level label generation technique to reduce the amount of effort for manual annotation of images.
We train two semantic segmentation models with VGG and ResNet backbones on images labeled using our pseudo labeling method and those of a state-of-the-art method.
The results indicate that using our pseudo-labels instead of those generated using the state-of-the-art method in the training process improves the mean-IoU and the frequency-weighted-IoU of the VGG and ResNet-based semantic segmentation models by 3.36%, 2.58%, 10
arXiv Detail & Related papers (2021-05-20T18:14:19Z) - Towards Good Practices for Efficiently Annotating Large-Scale Image
Classification Datasets [90.61266099147053]
We investigate efficient annotation strategies for collecting multi-class classification labels for a large collection of images.
We propose modifications and best practices aimed at minimizing human labeling effort.
Simulated experiments on a 125k image subset of the ImageNet100 show that it can be annotated to 80% top-1 accuracy with 0.35 annotations per image on average.
arXiv Detail & Related papers (2021-04-26T16:29:32Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Attention-Driven Dynamic Graph Convolutional Network for Multi-Label
Image Recognition [53.17837649440601]
We propose an Attention-Driven Dynamic Graph Convolutional Network (ADD-GCN) to dynamically generate a specific graph for each image.
Experiments on public multi-label benchmarks demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2020-12-05T10:10:12Z) - Adversarial Learning for Personalized Tag Recommendation [61.76193196463919]
We propose an end-to-end deep network which can be trained on large-scale datasets.
A joint training of user-preference and visual encoding allows the network to efficiently integrate the visual preference with tagging behavior.
We demonstrate the effectiveness of the proposed model on two different large-scale and publicly available datasets.
arXiv Detail & Related papers (2020-04-01T20:41:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.