Label Filling via Mixed Supervision for Medical Image Segmentation from Noisy Annotations
- URL: http://arxiv.org/abs/2410.16057v1
- Date: Mon, 21 Oct 2024 14:36:36 GMT
- Title: Label Filling via Mixed Supervision for Medical Image Segmentation from Noisy Annotations
- Authors: Ming Li, Wei Shen, Qingli Li, Yan Wang,
- Abstract summary: We propose a simple yet effective Label Filling framework, termed as LF-Net.
It predicts the groundtruth segmentation label given only noisy annotations during training.
Results on five datasets show that our LF-Net boosts segmentation accuracy in all datasets compared with state-of-the-art methods.
- Score: 22.910649758574852
- License:
- Abstract: The success of medical image segmentation usually requires a large number of high-quality labels. But since the labeling process is usually affected by the raters' varying skill levels and characteristics, the estimated masks provided by different raters usually suffer from high inter-rater variability. In this paper, we propose a simple yet effective Label Filling framework, termed as LF-Net, predicting the groundtruth segmentation label given only noisy annotations during training. The fundamental idea of label filling is to supervise the segmentation model by a subset of pixels with trustworthy labels, meanwhile filling labels of other pixels by mixed supervision. More concretely, we propose a qualified majority voting strategy, i.e., a threshold voting scheme is designed to model agreement among raters and the majority-voted labels of the selected subset of pixels are regarded as supervision. To fill labels of other pixels, two types of mixed auxiliary supervision are proposed: a soft label learned from intrinsic structures of noisy annotations, and raters' characteristics labels which propagate individual rater's characteristics information. LF-Net has two main advantages. 1) Training with trustworthy pixels incorporates training with confident supervision, guiding the direction of groundtruth label learning. 2) Two types of mixed supervision prevent over-fitting issues when the network is supervised by a subset of pixels, and guarantee high fidelity with the true label. Results on five datasets of diverse imaging modalities show that our LF-Net boosts segmentation accuracy in all datasets compared with state-of-the-art methods, with even a 7% improvement in DSC for MS lesion segmentation.
Related papers
- Superpixelwise Low-rank Approximation based Partial Label Learning for Hyperspectral Image Classification [19.535446654147126]
Insufficient prior knowledge of a captured hyperspectral image (HSI) scene may lead the experts or the automatic labeling systems to offer incorrect labels or ambiguous labels.
We propose a novel superpixelwise low-rank approximation (LRA)-based partial label learning method, namely SLAP.
arXiv Detail & Related papers (2024-05-27T12:26:49Z) - Distilling Self-Supervised Vision Transformers for Weakly-Supervised
Few-Shot Classification & Segmentation [58.03255076119459]
We address the task of weakly-supervised few-shot image classification and segmentation, by leveraging a Vision Transformer (ViT)
Our proposed method takes token representations from the self-supervised ViT and leverages their correlations, via self-attention, to produce classification and segmentation predictions.
Experiments on Pascal-5i and COCO-20i demonstrate significant performance gains in a variety of supervision settings.
arXiv Detail & Related papers (2023-07-07T06:16:43Z) - Dual-Perspective Semantic-Aware Representation Blending for Multi-Label
Image Recognition with Partial Labels [70.36722026729859]
We propose a dual-perspective semantic-aware representation blending (DSRB) that blends multi-granularity category-specific semantic representation across different images.
The proposed DS consistently outperforms current state-of-the-art algorithms on all proportion label settings.
arXiv Detail & Related papers (2022-05-26T00:33:44Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
This paper presents a Self-supervised Low-Rank Network ( SLRNet) for single-stage weakly supervised semantic segmentation (WSSS) and semi-supervised semantic segmentation (SSSS)
SLRNet uses cross-view self-supervision, that is, it simultaneously predicts several attentive LR representations from different views of an image to learn precise pseudo-labels.
Experiments on the Pascal VOC 2012, COCO, and L2ID datasets demonstrate that our SLRNet outperforms both state-of-the-art WSSS and SSSS methods with a variety of different settings.
arXiv Detail & Related papers (2022-03-19T09:19:55Z) - Semantic-Aware Representation Blending for Multi-Label Image Recognition
with Partial Labels [86.17081952197788]
We propose to blend category-specific representation across different images to transfer information of known labels to complement unknown labels.
Experiments on the MS-COCO, Visual Genome, Pascal VOC 2007 datasets show that the proposed SARB framework obtains superior performance over current leading competitors.
arXiv Detail & Related papers (2022-03-04T07:56:16Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Learning from Pixel-Level Label Noise: A New Perspective for
Semi-Supervised Semantic Segmentation [12.937770890847819]
We propose a graph based label noise detection and correction framework to deal with pixel-level noisy labels.
In particular, for the generated pixel-level noisy labels from weak supervisions by Class Activation Map (CAM), we train a clean segmentation model with strong supervisions.
Finally, we adopt a superpixel-based graph to represent the relations of spatial adjacency and semantic similarity between pixels in one image.
arXiv Detail & Related papers (2021-03-26T03:23:21Z) - SSKD: Self-Supervised Knowledge Distillation for Cross Domain Adaptive
Person Re-Identification [25.96221714337815]
Domain adaptive person re-identification (re-ID) is a challenging task due to the large discrepancy between the source domain and the target domain.
Existing methods mainly attempt to generate pseudo labels for unlabeled target images by clustering algorithms.
We propose a Self-Supervised Knowledge Distillation (SSKD) technique containing two modules, the identity learning and the soft label learning.
arXiv Detail & Related papers (2020-09-13T10:12:02Z) - Unsupervised Person Re-identification via Multi-label Classification [55.65870468861157]
This paper formulates unsupervised person ReID as a multi-label classification task to progressively seek true labels.
Our method starts by assigning each person image with a single-class label, then evolves to multi-label classification by leveraging the updated ReID model for label prediction.
To boost the ReID model training efficiency in multi-label classification, we propose the memory-based multi-label classification loss (MMCL)
arXiv Detail & Related papers (2020-04-20T12:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.