Contrastive Mean-Shift Learning for Generalized Category Discovery
- URL: http://arxiv.org/abs/2404.09451v1
- Date: Mon, 15 Apr 2024 04:31:24 GMT
- Title: Contrastive Mean-Shift Learning for Generalized Category Discovery
- Authors: Sua Choi, Dahyun Kang, Minsu Cho,
- Abstract summary: We address the problem of generalized category discovery (GCD)
We revisit the mean-shift algorithm, i.e., a powerful technique for mode seeking, and incorporate it into a contrastive learning framework.
The proposed method, dubbed Contrastive Mean-Shift (CMS) learning, trains an image encoder to produce representations with better clustering properties.
- Score: 45.19923199324919
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We address the problem of generalized category discovery (GCD) that aims to partition a partially labeled collection of images; only a small part of the collection is labeled and the total number of target classes is unknown. To address this generalized image clustering problem, we revisit the mean-shift algorithm, i.e., a classic, powerful technique for mode seeking, and incorporate it into a contrastive learning framework. The proposed method, dubbed Contrastive Mean-Shift (CMS) learning, trains an image encoder to produce representations with better clustering properties by an iterative process of mean shift and contrastive update. Experiments demonstrate that our method, both in settings with and without the total number of clusters being known, achieves state-of-the-art performance on six public GCD benchmarks without bells and whistles.
Related papers
- Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - Learning Semi-supervised Gaussian Mixture Models for Generalized
Category Discovery [36.01459228175808]
We propose an EM-like framework that alternates between representation learning and class number estimation.
We evaluate our framework on both generic image classification datasets and challenging fine-grained object recognition datasets.
arXiv Detail & Related papers (2023-05-10T13:47:38Z) - XCon: Learning with Experts for Fine-grained Category Discovery [4.787507865427207]
We present a novel method called Expert-Contrastive Learning (XCon) to help the model to mine useful information from the images.
Experiments on fine-grained datasets show a clear improved performance over the previous best methods, indicating the effectiveness of our method.
arXiv Detail & Related papers (2022-08-03T08:03:12Z) - Cluster-based Contrastive Disentangling for Generalized Zero-Shot
Learning [25.92340532509084]
Generalized Zero-Shot Learning (GZSL) aims to recognize both seen and unseen classes by training only the seen classes.
We propose a Cluster-based Contrastive Disentangling (CCD) method to improve GZSL by alleviating the semantic gap and domain shift problems.
arXiv Detail & Related papers (2022-03-05T02:50:12Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
We propose a novel framework for image clustering that incorporates joint representation learning and clustering.
Our method significantly outperforms state-of-the-art single-stage clustering methods across a variety of image datasets.
arXiv Detail & Related papers (2021-07-24T15:36:49Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Unsupervised Person Re-identification via Softened Similarity Learning [122.70472387837542]
Person re-identification (re-ID) is an important topic in computer vision.
This paper studies the unsupervised setting of re-ID, which does not require any labeled information.
Experiments on two image-based and video-based datasets demonstrate state-of-the-art performance.
arXiv Detail & Related papers (2020-04-07T17:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.