Novel entropy difference-based EEG channel selection technique for automated detection of ADHD
- URL: http://arxiv.org/abs/2404.09493v1
- Date: Mon, 15 Apr 2024 06:31:12 GMT
- Title: Novel entropy difference-based EEG channel selection technique for automated detection of ADHD
- Authors: Shishir Maheshwari, Kandala N V P S Rajesh, Vivek Kanhangad, U Rajendra Acharya, T Sunil Kumar,
- Abstract summary: This paper presents an automated approach for ADHD detection using the proposed entropy difference (EnD)-based encephalogram (EEG) channel selection approach.
In the proposed approach, we selected the most significant EEG channels for the accurate identification of ADHD.
Our proposed approach yielded the highest accuracy of 99.29% using the public database.
- Score: 9.974570957415212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Attention deficit hyperactivity disorder (ADHD) is one of the common neurodevelopmental disorders in children. This paper presents an automated approach for ADHD detection using the proposed entropy difference (EnD)- based encephalogram (EEG) channel selection approach. In the proposed approach, we selected the most significant EEG channels for the accurate identification of ADHD using an EnD-based channel selection approach. Secondly, a set of features is extracted from the selected channels and fed to a classifier. To verify the effectiveness of the channels selected, we explored three sets of features and classifiers. More specifically, we explored discrete wavelet transform (DWT), empirical mode decomposition (EMD) and symmetrically-weighted local binary pattern (SLBP)-based features. To perform automated classification, we have used k-nearest neighbor (k-NN), Ensemble classifier, and support vectors machine (SVM) classifiers. Our proposed approach yielded the highest accuracy of 99.29% using the public database. In addition, the proposed EnD-based channel selection has consistently provided better classification accuracies than the entropy-based channel selection approach. Also, the developed method
Related papers
- Topological Feature Search Method for Multichannel EEG: Application in ADHD classification [13.381770446807016]
Topological Data Analysis offers a novel perspective for ADHD classification.
This paper presents an enhanced TDA approach applicable to multi-channel EEG in ADHD.
Results demonstrate that the accuracy, sensitivity, and specificity reach 78.27%, 80.62%, and 75.63%, respectively.
arXiv Detail & Related papers (2024-04-10T01:37:41Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Identification of Autism spectrum disorder based on a novel feature
selection method and Variational Autoencoder [7.0876609220947655]
Noninvasive brain imaging such as resting-state functional magnetic resonance imaging (rs-fMRI) provides a promising solution for the early diagnosis of Autism spectrum disorder (ASD)
This paper introduces a classification framework to aid ASD diagnosis based on rs-fMRI.
arXiv Detail & Related papers (2022-04-07T08:50:48Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - An Efficient Epileptic Seizure Detection Technique using Discrete
Wavelet Transform and Machine Learning Classifiers [0.0]
This paper presents an epilepsy detection method based on discrete wavelet transform (DWT) and Machine learning classifiers.
DWT has been used for feature extraction as it provides a better decomposition of the signals in different frequency bands.
arXiv Detail & Related papers (2021-09-26T18:30:04Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Learning Signal Representations for EEG Cross-Subject Channel Selection
and Trial Classification [0.3553493344868413]
We introduce an algorithm for subject-independent channel selection of EEG recordings.
It exploits channel-specific 1D-Convolutional Neural Networks (1D-CNNs) as feature extractors in a supervised fashion to maximize class separability.
After training, the algorithm can be exploited by transferring only the parametrized subgroup of selected channel-specific 1D-CNNs to new signals from new subjects.
arXiv Detail & Related papers (2021-06-20T06:22:16Z) - Channel DropBlock: An Improved Regularization Method for Fine-Grained
Visual Classification [58.07257910065007]
Existing approaches mainly tackle this problem by introducing attention mechanisms to locate the discriminative parts or feature encoding approaches to extract the highly parameterized features in a weakly-supervised fashion.
In this work, we propose a lightweight yet effective regularization method named Channel DropBlock (CDB) in combination with two alternative correlation metrics, to address this problem.
arXiv Detail & Related papers (2021-06-07T09:03:02Z) - End-to-end learnable EEG channel selection with deep neural networks [72.21556656008156]
We propose a framework to embed the EEG channel selection in the neural network itself.
We deal with the discrete nature of this new optimization problem by employing continuous relaxations of the discrete channel selection parameters.
This generic approach is evaluated on two different EEG tasks.
arXiv Detail & Related papers (2021-02-11T13:44:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.