On the Necessity of Collaboration for Online Model Selection with Decentralized Data
- URL: http://arxiv.org/abs/2404.09494v4
- Date: Sun, 06 Oct 2024 06:21:35 GMT
- Title: On the Necessity of Collaboration for Online Model Selection with Decentralized Data
- Authors: Junfan Li, Zheshun Wu, Zenglin Xu, Irwin King,
- Abstract summary: We consider online model selection with decentralized data over $M$ clients, and study the necessity of collaboration among clients.
Our results show (i) collaboration is unnecessary in the absence of computational constraints on clients; (ii) collaboration is necessary if the computational cost on each client is limited to $o(K)$, where $K$ is the number of candidate hypothesis spaces.
- Score: 53.244188985271606
- License:
- Abstract: We consider online model selection with decentralized data over $M$ clients, and study the necessity of collaboration among clients. Previous work proposed various federated algorithms without demonstrating their necessity,while we answer the question from a novel perspective of computational constraints. We prove lower bounds on the regret, and propose a federated algorithm and analyze the upper bound.Our results show (i) collaboration is unnecessary in the absence of computational constraints on clients; (ii) collaboration is necessary if the computational cost on each client is limited to $o(K)$, where $K$ is the number of candidate hypothesis spaces. We clarify the unnecessary nature of collaboration in previous federated algorithms for distributed online multi-kernel learning,and improve the regret bounds at a smaller computational and communication cost. Our algorithm relies on three new techniques including an improved Bernstein's inequality for martingale, a federated online mirror descent framework, and decoupling model selection and prediction, which might be of independent interest.
Related papers
- Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
We propose a theoretical framework for aligning economic interests of different stakeholders in the online learning problems through contract design.
For the planning problem, we design an efficient dynamic programming algorithm to determine the optimal contracts against the far-sighted agent.
For the learning problem, we introduce a generic design of no-regret learning algorithms to untangle the challenges from robust design of contracts to the balance of exploration and exploitation.
arXiv Detail & Related papers (2024-07-01T16:53:00Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
An emerging strategy to tackle optimization problems involves the adoption of graph neural networks (GNNs) as an alternative to traditional algorithms.
Despite the growing popularity of GNNs and traditional algorithm solvers in the realm of CO, there is limited research on their integrated use and the correlation between them within an end-to-end framework.
We introduce a decision-focused framework that utilizes GNNs to address CO problems with auxiliary support.
arXiv Detail & Related papers (2024-06-05T22:52:27Z) - Federated Q-Learning with Reference-Advantage Decomposition: Almost Optimal Regret and Logarithmic Communication Cost [4.895986534376972]
We propose a novel model-free federated Q-learning algorithm, termed FedQ-Advantage.
Our algorithm not only requires a lower logarithmic communication cost but also achieves an almost optimal regret, reaching the information bound up to a logarithmic factor and near-linear regret speedup compared to its single-agent counterpart when the time horizon is sufficiently large.
arXiv Detail & Related papers (2024-05-29T06:26:52Z) - Communication-Efficient Federated Non-Linear Bandit Optimization [26.23638987873429]
We propose a new algorithm, named Fed-GO-UCB, for federated bandit optimization with generic non-linear objective function.
Under some mild conditions, we rigorously prove that Fed-GO-UCB is able to achieve sub-linear rate for both cumulative regret and communication cost.
arXiv Detail & Related papers (2023-11-03T03:50:31Z) - Serverless Federated AUPRC Optimization for Multi-Party Collaborative
Imbalanced Data Mining [119.89373423433804]
Area Under Precision-Recall (AUPRC) was introduced as an effective metric.
Serverless multi-party collaborative training can cut down the communications cost by avoiding the server node bottleneck.
We propose a new ServerLess biAsed sTochastic gradiEnt (SLATE) algorithm to directly optimize the AUPRC.
arXiv Detail & Related papers (2023-08-06T06:51:32Z) - Minimalistic Predictions to Schedule Jobs with Online Precedence
Constraints [117.8317521974783]
We consider non-clairvoyant scheduling with online precedence constraints.
An algorithm is oblivious to any job dependencies and learns about a job only if all of its predecessors have been completed.
arXiv Detail & Related papers (2023-01-30T13:17:15Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
This paper considers the problem of online clustering with bandit feedback.
It includes a novel stopping rule for sequential testing that circumvents the need to solve any NP-hard weighted clustering problem as its subroutines.
We show through extensive simulations on synthetic and real-world datasets that BOC's performance matches the lower boundally, and significantly outperforms a non-adaptive baseline algorithm.
arXiv Detail & Related papers (2022-02-09T06:05:05Z) - Sample-based and Feature-based Federated Learning via Mini-batch SSCA [18.11773963976481]
This paper investigates sample-based and feature-based federated optimization.
We show that the proposed algorithms can preserve data privacy through the model aggregation mechanism.
We also show that the proposed algorithms converge to Karush-Kuhn-Tucker points of the respective federated optimization problems.
arXiv Detail & Related papers (2021-04-13T08:23:46Z) - Exact Support Recovery in Federated Regression with One-shot
Communication [31.061339148448006]
Federated learning provides a framework to address the challenges of distributed computing, data ownership and privacy.
We provide a simple communication algorithm which only needs one-shot communication with the centralized server to compute the exact support.
Our method does not require the clients to solve any optimization problem and thus, can be run on devices with low computational capabilities.
arXiv Detail & Related papers (2020-06-22T19:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.