論文の概要: Learning Human Motion from Monocular Videos via Cross-Modal Manifold Alignment
- arxiv url: http://arxiv.org/abs/2404.09499v1
- Date: Mon, 15 Apr 2024 06:38:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 13:19:30.726934
- Title: Learning Human Motion from Monocular Videos via Cross-Modal Manifold Alignment
- Title(参考訳): クロスモーダルマニフォールドアライメントによるモノクロ映像からの人間の動きの学習
- Authors: Shuaiying Hou, Hongyu Tao, Junheng Fang, Changqing Zou, Hujun Bao, Weiwei Xu,
- Abstract要約: 2次元入力から人間の3D動作を学ぶことは、コンピュータビジョンとコンピュータグラフィックスの領域における基本的な課題である。
本稿では、モーダルなラテント特徴空間アライメントにより、動きの先行値を活用するビデオ・トゥ・モーション・ジェネレータ(VTM)を提案する。
VTMでは、モノクロビデオから3Dの人間の動きを再構築する、最先端のパフォーマンスが紹介されている。
- 参考スコア(独自算出の注目度): 45.74813582690906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning 3D human motion from 2D inputs is a fundamental task in the realms of computer vision and computer graphics. Many previous methods grapple with this inherently ambiguous task by introducing motion priors into the learning process. However, these approaches face difficulties in defining the complete configurations of such priors or training a robust model. In this paper, we present the Video-to-Motion Generator (VTM), which leverages motion priors through cross-modal latent feature space alignment between 3D human motion and 2D inputs, namely videos and 2D keypoints. To reduce the complexity of modeling motion priors, we model the motion data separately for the upper and lower body parts. Additionally, we align the motion data with a scale-invariant virtual skeleton to mitigate the interference of human skeleton variations to the motion priors. Evaluated on AIST++, the VTM showcases state-of-the-art performance in reconstructing 3D human motion from monocular videos. Notably, our VTM exhibits the capabilities for generalization to unseen view angles and in-the-wild videos.
- Abstract(参考訳): 2次元入力から人間の3D動作を学ぶことは、コンピュータビジョンとコンピュータグラフィックスの領域における基本的な課題である。
従来の多くの手法は、学習プロセスに動きの先入観を導入することによって、本質的にあいまいなタスクに支障をきたす。
しかし、これらのアプローチは、そのような前の完全な構成を定義したり、堅牢なモデルを訓練する際の困難に直面します。
本稿では,3次元モーションと2次元インプット,すなわちビデオと2次元キーポイントの相互ラテント特徴空間アライメントにより,動きの先行値を活用するビデオ・トゥ・モーション・ジェネレータ(VTM)を提案する。
動作先行のモデル化の複雑さを軽減するため,上半身と下半身の動作データを別々にモデル化する。
さらに,動作データをスケール不変の仮想骨格と整列させて,人間の骨格変動と動き先行との干渉を軽減する。
AIST++に基づいて評価され、VTMはモノクロビデオから3Dの人間の動きを再構築する最先端のパフォーマンスを示す。
特に,我々のVTMは,視野角や眼球内ビデオの一般化機能を示す。
関連論文リスト
- SurMo: Surface-based 4D Motion Modeling for Dynamic Human Rendering [45.51684124904457]
統合されたフレームワークにおける時間的ダイナミクスと人間の外見をモデル化する新しい4DモーションパラダイムであるSurMoを提案する。
効率的なコンパクトな表面ベース三面体で4次元の人間の動きをモデル化する表面ベースの動き符号化。
身体運動学習を促進するために設計された身体運動復号法。
表面条件の効率的なデコードにより、モーショントリプレーンを画像にレンダリングする4次元の外観モデリング。
論文 参考訳(メタデータ) (2024-04-01T16:34:27Z) - Cinematic Behavior Transfer via NeRF-based Differentiable Filming [63.1622492808519]
既存のSLAM手法は動的シーンの制限に直面し、人間のポーズ推定はしばしば2次元投影に焦点を当てる。
まず,逆撮影行動推定手法を提案する。
次に,新しい2Dビデオや3D仮想環境に様々な撮影タイプを転送できる映像転送パイプラインを導入する。
論文 参考訳(メタデータ) (2023-11-29T15:56:58Z) - MotionBERT: A Unified Perspective on Learning Human Motion
Representations [46.67364057245364]
本研究では,大規模・異種データ資源から人の動き表現を学習することで,人間中心のビデオタスクに取り組むための統一的な視点を示す。
本研究では,ノイズのある部分的な2次元観測から基礎となる3次元運動を復元するために,モーションエンコーダを訓練する事前学習段階を提案する。
動作エンコーダをDST(Dual-stream Spatio-temporal Transformer)ニューラルネットワークで実装する。
論文 参考訳(メタデータ) (2022-10-12T19:46:25Z) - Human Performance Capture from Monocular Video in the Wild [50.34917313325813]
本研究では,挑戦的な身体ポーズを特徴とするモノクロ映像から動的3次元人体形状をキャプチャする手法を提案する。
本手法は,現在開発中の3DPWビデオデータセットにおいて,最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2021-11-29T16:32:41Z) - Action2video: Generating Videos of Human 3D Actions [31.665831044217363]
我々は、所定のアクションカテゴリから多様で自然な人間の動きのビデオを生成するという、興味深いが挑戦的な課題に取り組むことを目的としている。
重要な問題は、視覚的な外観で現実的な複数の異なる動き列を合成する能力にある。
Action2motionallyは、所定のアクションカテゴリのもっともらしい3Dポーズシーケンスを生成し、モーション2ビデオによって処理され、レンダリングされ、2Dビデオを形成する。
論文 参考訳(メタデータ) (2021-11-12T20:20:37Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
既存のディープモデルは、ほぼ正確に見えるエラーを含むビデオから2Dと3Dキネマティックのポーズを予測する。
本稿では,最初の2次元と3次元のポーズ推定を入力として,映像系列から3次元の人間の動きを推定する物理に基づく手法を提案する。
論文 参考訳(メタデータ) (2020-07-22T21:09:11Z) - Motion Guided 3D Pose Estimation from Videos [81.14443206968444]
本研究では,2次元ポーズから1次元の人物ポーズ推定を行う問題に対して,運動損失と呼ばれる新たな損失関数を提案する。
運動損失の計算では、ペアワイズ・モーション・エンコーディング(ペアワイズ・モーション・エンコーディング)と呼ばれる単純なキーポイント・モーションの表現が導入された。
UGCN(U-shaped GCN)と呼ばれる新しいグラフ畳み込みネットワークアーキテクチャを設計し,短期および長期の動作情報の両方をキャプチャする。
論文 参考訳(メタデータ) (2020-04-29T06:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。