Inferring Behavior-Specific Context Improves Zero-Shot Generalization in Reinforcement Learning
- URL: http://arxiv.org/abs/2404.09521v1
- Date: Mon, 15 Apr 2024 07:31:48 GMT
- Title: Inferring Behavior-Specific Context Improves Zero-Shot Generalization in Reinforcement Learning
- Authors: Tidiane Camaret Ndir, André Biedenkapp, Noor Awad,
- Abstract summary: We argue that understanding and utilizing contextual cues, such as the gravity level of the environment, is critical for robust generalization.
Our algorithm demonstrates improved generalization on various simulated domains, outperforming prior context-learning techniques in zero-shot settings.
- Score: 4.902544998453533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we address the challenge of zero-shot generalization (ZSG) in Reinforcement Learning (RL), where agents must adapt to entirely novel environments without additional training. We argue that understanding and utilizing contextual cues, such as the gravity level of the environment, is critical for robust generalization, and we propose to integrate the learning of context representations directly with policy learning. Our algorithm demonstrates improved generalization on various simulated domains, outperforming prior context-learning techniques in zero-shot settings. By jointly learning policy and context, our method acquires behavior-specific context representations, enabling adaptation to unseen environments and marks progress towards reinforcement learning systems that generalize across diverse real-world tasks. Our code and experiments are available at https://github.com/tidiane-camaret/contextual_rl_zero_shot.
Related papers
- Vision-Language Models Provide Promptable Representations for Reinforcement Learning [67.40524195671479]
We propose a novel approach that uses the vast amounts of general and indexable world knowledge encoded in vision-language models (VLMs) pre-trained on Internet-scale data for embodied reinforcement learning (RL)
We show that our approach can use chain-of-thought prompting to produce representations of common-sense semantic reasoning, improving policy performance in novel scenes by 1.5 times.
arXiv Detail & Related papers (2024-02-05T00:48:56Z) - Invariant Causal Imitation Learning for Generalizable Policies [87.51882102248395]
We propose Invariant Causal Learning (ICIL) to learn an imitation policy.
ICIL learns a representation of causal features that is disentangled from the specific representations of noise variables.
We show that ICIL is effective in learning imitation policies capable of generalizing to unseen environments.
arXiv Detail & Related papers (2023-11-02T16:52:36Z) - Invariance is Key to Generalization: Examining the Role of
Representation in Sim-to-Real Transfer for Visual Navigation [35.01394611106655]
Key to generalization is representations that are rich enough to capture all task-relevant information.
We experimentally study such a representation for visual navigation.
We show that our representation reduces the A-distance between the training and test domains.
arXiv Detail & Related papers (2023-10-23T15:15:19Z) - Learning Symbolic Rules over Abstract Meaning Representations for
Textual Reinforcement Learning [63.148199057487226]
We propose a modular, NEuroSymbolic Textual Agent (NESTA) that combines a generic semantic generalization with a rule induction system to learn interpretable rules as policies.
Our experiments show that the proposed NESTA method outperforms deep reinforcement learning-based techniques by achieving better to unseen test games and learning from fewer training interactions.
arXiv Detail & Related papers (2023-07-05T23:21:05Z) - Generalization Across Observation Shifts in Reinforcement Learning [13.136140831757189]
We extend the bisimulation framework to account for context dependent observation shifts.
Specifically, we focus on the simulator based learning setting and use alternate observations to learn a representation space.
This allows us to deploy the agent to varying observation settings during test time and generalize to unseen scenarios.
arXiv Detail & Related papers (2023-06-07T16:49:03Z) - Dynamics-Adaptive Continual Reinforcement Learning via Progressive
Contextualization [29.61829620717385]
Key challenge of continual reinforcement learning (CRL) in dynamic environments is to promptly adapt the RL agent's behavior as the environment changes over its lifetime.
DaCoRL learns a context-conditioned policy using progressive contextualization.
DaCoRL features consistent superiority over existing methods in terms of the stability, overall performance and generalization ability.
arXiv Detail & Related papers (2022-09-01T10:26:58Z) - AACC: Asymmetric Actor-Critic in Contextual Reinforcement Learning [13.167123175701802]
This paper formalizes the task of adapting to changing environmental dynamics in Reinforcement Learning (RL)
We then propose the Asymmetric Actor-Critic in Contextual RL (AACC) as an end-to-end actor-critic method to deal with such generalization tasks.
We demonstrate the essential improvements in the performance of AACC over existing baselines experimentally in a range of simulated environments.
arXiv Detail & Related papers (2022-08-03T22:52:26Z) - A Regularized Implicit Policy for Offline Reinforcement Learning [54.7427227775581]
offline reinforcement learning enables learning from a fixed dataset, without further interactions with the environment.
We propose a framework that supports learning a flexible yet well-regularized fully-implicit policy.
Experiments and ablation study on the D4RL dataset validate our framework and the effectiveness of our algorithmic designs.
arXiv Detail & Related papers (2022-02-19T20:22:04Z) - Contextualize Me -- The Case for Context in Reinforcement Learning [49.794253971446416]
Contextual Reinforcement Learning (cRL) provides a framework to model such changes in a principled manner.
We show how cRL contributes to improving zero-shot generalization in RL through meaningful benchmarks and structured reasoning about generalization tasks.
arXiv Detail & Related papers (2022-02-09T15:01:59Z) - DisCo RL: Distribution-Conditioned Reinforcement Learning for
General-Purpose Policies [116.12670064963625]
We develop an off-policy algorithm called distribution-conditioned reinforcement learning (DisCo RL) to efficiently learn contextual policies.
We evaluate DisCo RL on a variety of robot manipulation tasks and find that it significantly outperforms prior methods on tasks that require generalization to new goal distributions.
arXiv Detail & Related papers (2021-04-23T16:51:58Z) - Generalization Guarantees for Imitation Learning [6.542289202349586]
Control policies from imitation learning can often fail to generalize to novel environments.
We present rigorous generalization guarantees for imitation learning by leveraging the Probably Approximately Correct (PAC)-Bayes framework.
arXiv Detail & Related papers (2020-08-05T03:04:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.