Application of the representative measure approach to assess the reliability of decision trees in dealing with unseen vehicle collision data
- URL: http://arxiv.org/abs/2404.09541v1
- Date: Mon, 15 Apr 2024 08:06:54 GMT
- Title: Application of the representative measure approach to assess the reliability of decision trees in dealing with unseen vehicle collision data
- Authors: Javier Perera-Lago, Víctor Toscano-Durán, Eduardo Paluzo-Hidalgo, Sara Narteni, Matteo Rucco,
- Abstract summary: Representative datasets are a cornerstone in shaping the trajectory of artificial intelligence (AI) development.
We investigate the reliability of the $varepsilon$-representativeness method to assess the dataset similarity from a theoretical perspective for decision trees.
We extend the results experimentally in the context of unseen vehicle collision data for XGboost.
- Score: 0.6571063542099526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning algorithms are fundamental components of novel data-informed Artificial Intelligence architecture. In this domain, the imperative role of representative datasets is a cornerstone in shaping the trajectory of artificial intelligence (AI) development. Representative datasets are needed to train machine learning components properly. Proper training has multiple impacts: it reduces the final model's complexity, power, and uncertainties. In this paper, we investigate the reliability of the $\varepsilon$-representativeness method to assess the dataset similarity from a theoretical perspective for decision trees. We decided to focus on the family of decision trees because it includes a wide variety of models known to be explainable. Thus, in this paper, we provide a result guaranteeing that if two datasets are related by $\varepsilon$-representativeness, i.e., both of them have points closer than $\varepsilon$, then the predictions by the classic decision tree are similar. Experimentally, we have also tested that $\varepsilon$-representativeness presents a significant correlation with the ordering of the feature importance. Moreover, we extend the results experimentally in the context of unseen vehicle collision data for XGboost, a machine-learning component widely adopted for dealing with tabular data.
Related papers
- Learning accurate and interpretable decision trees [27.203303726977616]
We develop approaches to design decision tree learning algorithms given repeated access to data from the same domain.
We study the sample complexity of tuning prior parameters in Bayesian decision tree learning, and extend our results to decision tree regression.
We also study the interpretability of the learned decision trees and introduce a data-driven approach for optimizing the explainability versus accuracy trade-off using decision trees.
arXiv Detail & Related papers (2024-05-24T20:10:10Z) - An Interpretable Client Decision Tree Aggregation process for Federated Learning [7.8973037023478785]
We propose an Interpretable Client Decision Tree aggregation process for Federated Learning scenarios.
This model is based on aggregating multiple decision paths of the decision trees and can be used on different decision tree types, such as ID3 and CART.
We carry out the experiments within four datasets, and the analysis shows that the tree built with the model improves the local models, and outperforms the state-of-the-art.
arXiv Detail & Related papers (2024-04-03T06:53:56Z) - Surprisal Driven $k$-NN for Robust and Interpretable Nonparametric
Learning [1.4293924404819704]
We shed new light on the traditional nearest neighbors algorithm from the perspective of information theory.
We propose a robust and interpretable framework for tasks such as classification, regression, density estimation, and anomaly detection using a single model.
Our work showcases the architecture's versatility by achieving state-of-the-art results in classification and anomaly detection.
arXiv Detail & Related papers (2023-11-17T00:35:38Z) - Metric Tools for Sensitivity Analysis with Applications to Neural
Networks [0.0]
Explainable Artificial Intelligence (XAI) aims to provide interpretations for predictions made by Machine Learning models.
In this paper, a theoretical framework is proposed to study sensitivities of ML models using metric techniques.
A complete family of new quantitative metrics called $alpha$-curves is extracted.
arXiv Detail & Related papers (2023-05-03T18:10:21Z) - FeDXL: Provable Federated Learning for Deep X-Risk Optimization [105.17383135458897]
We tackle a novel federated learning (FL) problem for optimizing a family of X-risks, to which no existing algorithms are applicable.
The challenges for designing an FL algorithm for X-risks lie in the non-decomability of the objective over multiple machines and the interdependency between different machines.
arXiv Detail & Related papers (2022-10-26T00:23:36Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - Fed-EINI: An Efficient and Interpretable Inference Framework for
Decision Tree Ensembles in Federated Learning [11.843365055516566]
Fed-EINI is an efficient and interpretable inference framework for federated decision tree models.
We propose to protect the decision path by the efficient additively homomorphic encryption method.
Experiments show that the inference efficiency is improved by over $50%$ in average.
arXiv Detail & Related papers (2021-05-20T06:40:05Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
Finding an interpretable non-redundant representation of real-world data is one of the key problems in Machine Learning.
We propose a novel method of using data augmentations when training autoencoders.
We train a Variational Autoencoder in such a way, that it makes transformation outcome predictable by auxiliary network.
arXiv Detail & Related papers (2020-10-10T14:04:44Z) - A Theory of Usable Information Under Computational Constraints [103.5901638681034]
We propose a new framework for reasoning about information in complex systems.
Our foundation is based on a variational extension of Shannon's information theory.
We show that by incorporating computational constraints, $mathcalV$-information can be reliably estimated from data.
arXiv Detail & Related papers (2020-02-25T06:09:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.