論文の概要: Efficient and accurate neural field reconstruction using resistive memory
- arxiv url: http://arxiv.org/abs/2404.09613v1
- Date: Mon, 15 Apr 2024 09:33:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 12:50:12.956514
- Title: Efficient and accurate neural field reconstruction using resistive memory
- Title(参考訳): 抵抗記憶を用いた高能率・高精度脳野再構成
- Authors: Yifei Yu, Shaocong Wang, Woyu Zhang, Xinyuan Zhang, Xiuzhe Wu, Yangu He, Jichang Yang, Yue Zhang, Ning Lin, Bo Wang, Xi Chen, Songqi Wang, Xumeng Zhang, Xiaojuan Qi, Zhongrui Wang, Dashan Shang, Qi Liu, Kwang-Ting Cheng, Ming Liu,
- Abstract要約: デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
- 参考スコア(独自算出の注目度): 52.68088466453264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human beings construct perception of space by integrating sparse observations into massively interconnected synapses and neurons, offering a superior parallelism and efficiency. Replicating this capability in AI finds wide applications in medical imaging, AR/VR, and embodied AI, where input data is often sparse and computing resources are limited. However, traditional signal reconstruction methods on digital computers face both software and hardware challenges. On the software front, difficulties arise from storage inefficiencies in conventional explicit signal representation. Hardware obstacles include the von Neumann bottleneck, which limits data transfer between the CPU and memory, and the limitations of CMOS circuits in supporting parallel processing. We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs. Software-wise, we employ neural field to implicitly represent signals via neural networks, which is further compressed using low-rank decomposition and structured pruning. Hardware-wise, we design a resistive memory-based computing-in-memory (CIM) platform, featuring a Gaussian Encoder (GE) and an MLP Processing Engine (PE). The GE harnesses the intrinsic stochasticity of resistive memory for efficient input encoding, while the PE achieves precise weight mapping through a Hardware-Aware Quantization (HAQ) circuit. We demonstrate the system's efficacy on a 40nm 256Kb resistive memory-based in-memory computing macro, achieving huge energy efficiency and parallelism improvements without compromising reconstruction quality in tasks like 3D CT sparse reconstruction, novel view synthesis, and novel view synthesis for dynamic scenes. This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
- Abstract(参考訳): 人間は、スパース観測を巨大な相互接続されたシナプスとニューロンに統合することで空間の知覚を構築し、優れた並列性と効率を提供する。
この機能をAIで再現することは、医療画像、AR/VR、そして組み込みAIにおいて幅広い応用を見出す。
しかし、デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
ソフトウェア面では、従来の明示的な信号表現におけるストレージの非効率性によって困難が生じる。
ハードウェア障害としては、CPUとメモリ間のデータ転送を制限するフォン・ノイマンボトルネックや、並列処理をサポートするCMOS回路の制限がある。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
ソフトウェア面では、ニューラルネットワークを介して暗黙的に信号を表現するためにニューラルネットワークを使用し、低ランク分解と構造化プルーニングを用いてさらに圧縮される。
ハードウェア面では、ガウスエンコーダ(GE)とMPP処理エンジン(PE)を備えた抵抗型メモリベース・コンピューティング・イン・メモリ(CIM)プラットフォームを設計する。
GEは、抵抗メモリの固有の確率性を利用して効率的な入力符号化を行い、PEはハードウェア・アウェア量子化(HAQ)回路を介して正確な重量マッピングを行う。
本稿では,40nm 256Kbの抵抗性メモリベースのインメモリ・コンピューティング・マクロにおいて,3次元CTスパース再構成,新規ビュー合成,動的シーンのための新規ビュー合成などのタスクにおいて,再構成品質を損なうことなく,膨大なエネルギー効率と並列性の向上を実現したシステムの有効性を実証する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
関連論文リスト
- Topology Optimization of Random Memristors for Input-Aware Dynamic SNN [44.38472635536787]
入力対応動的旋回型スパイクニューラルネットワーク(PRIME)のプルーニング最適化について紹介する。
信号表現の面では、PRIMEは脳固有のスパイキング機構をエミュレートするために、漏れやすい統合と発火のニューロンを使用する。
計算深度の動的調整にインスパイアされた再構成性のために、PRIMEは入力対応の動的早期停止ポリシーを採用している。
論文 参考訳(メタデータ) (2024-07-26T09:35:02Z) - Dynamic neural network with memristive CIM and CAM for 2D and 3D vision [57.6208980140268]
本稿では,memristor を用いた意味記憶に基づく動的ニューラルネットワーク (DNN) を提案する。
ネットワークは、受信したデータとセマンティックベクターとして格納された過去の経験を関連付ける。
MNISTとModelNetのデータセットから画像と3Dポイントを分類するために、ResNetとPointNet++の40nmのmemristorマクロを用いて、我々の共同設計を検証する。
論文 参考訳(メタデータ) (2024-07-12T04:55:57Z) - Memory Is All You Need: An Overview of Compute-in-Memory Architectures for Accelerating Large Language Model Inference [2.9302211589186244]
大規模言語モデル(LLM)は自然言語処理を変換し、機械が人間のようなテキストを生成し、意味のある会話を行うことを可能にする。
計算と記憶能力の発達はムーアの法則の廃止によってさらに悪化している。
コンピュート・イン・メモリ(CIM)技術は、メモリ内でアナログ計算を直接実行することにより、AI推論を加速するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-06-12T16:57:58Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
スコアベースの拡散のような現在のAIGC法は、迅速性と効率性の点で依然として不足している。
スコアベース拡散のための時間連続型およびアナログ型インメモリ型ニューラル微分方程式解法を提案する。
我々は180nmの抵抗型メモリインメモリ・コンピューティング・マクロを用いて,我々の解を実験的に検証した。
論文 参考訳(メタデータ) (2024-04-08T16:34:35Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AIモデルは、エネルギー消費と環境持続可能性に前例のない課題を提示する。
有望な解決策の1つは、アナログコンピューティングを再考することである。
ここでは、構造的塑性に着想を得たエッジプルーニングを用いたユニバーサルソリューション、ソフトウェア・ハードウエアの共設計について報告する。
論文 参考訳(メタデータ) (2023-11-13T08:59:01Z) - Robust High-dimensional Memory-augmented Neural Networks [13.82206983716435]
メモリ拡張ニューラルネットワークは、これらの問題を克服するために、明示的なメモリでニューラルネットワークを強化する。
この明示的なメモリへのアクセスは、各個々のメモリエントリを含むソフト読み取りおよび書き込み操作を介して行われる。
本稿では,高次元(HD)ベクトル上でのアナログインメモリ計算を行う明示メモリとして,計算メモリユニットを用いた頑健なアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-10-05T12:01:56Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。