In-Context Translation: Towards Unifying Image Recognition, Processing, and Generation
- URL: http://arxiv.org/abs/2404.09633v1
- Date: Mon, 15 Apr 2024 10:05:36 GMT
- Title: In-Context Translation: Towards Unifying Image Recognition, Processing, and Generation
- Authors: Han Xue, Qianru Sun, Li Song, Wenjun Zhang, Zhiwu Huang,
- Abstract summary: We propose In-Context Translation (ICT) to unify visual recognition (e.g., semantic segmentation), low-level image processing (e.g., denoising), and conditional image generation (e.g., edge-to-image synthesis)
ICT standardizes the training of different tasks into a general in-context learning, where "in-context" means the input comprises an example input-output pair of the target task and a query image.
In experiments, ICT unifies ten vision tasks and showcases impressive performance on their respective benchmarks.
- Score: 44.26537443476901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose In-Context Translation (ICT), a general learning framework to unify visual recognition (e.g., semantic segmentation), low-level image processing (e.g., denoising), and conditional image generation (e.g., edge-to-image synthesis). Thanks to unification, ICT significantly reduces the inherent inductive bias that comes with designing models for specific tasks, and it maximizes mutual enhancement across similar tasks. However, the unification across a large number of tasks is non-trivial due to various data formats and training pipelines. To this end, ICT introduces two designs. Firstly, it standardizes input-output data of different tasks into RGB image pairs, e.g., semantic segmentation data pairs an RGB image with its segmentation mask in the same RGB format. This turns different tasks into a general translation task between two RGB images. Secondly, it standardizes the training of different tasks into a general in-context learning, where "in-context" means the input comprises an example input-output pair of the target task and a query image. The learning objective is to generate the "missing" data paired with the query. The implicit translation process is thus between the query and the generated image. In experiments, ICT unifies ten vision tasks and showcases impressive performance on their respective benchmarks. Notably, compared to its competitors, e.g., Painter and PromptDiffusion, ICT trained on only 4 RTX 3090 GPUs is shown to be more efficient and less costly in training.
Related papers
- MoTaDual: Modality-Task Dual Alignment for Enhanced Zero-shot Composed Image Retrieval [20.612534837883892]
Composed Image Retrieval (CIR) is a challenging vision-language task, utilizing bi-modal (image+text) queries to retrieve target images.
In this paper, we propose a two-stage framework to tackle both discrepancies.
MoTaDual achieves the state-of-the-art performance across four widely used ZS-CIR benchmarks, while maintaining low training time and computational cost.
arXiv Detail & Related papers (2024-10-31T08:49:05Z) - VEGA: Learning Interleaved Image-Text Comprehension in Vision-Language Large Models [76.94378391979228]
We introduce a new, more demanding task known as Interleaved Image-Text (IITC)
This task challenges models to discern and disregard superfluous elements in both images and text to accurately answer questions.
In support of this task, we further craft a new VEGA dataset, tailored for the IITC task on scientific content, and devised a subtask, Image-Text Association (ITA)
arXiv Detail & Related papers (2024-06-14T17:59:40Z) - InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists [66.85125112199898]
We develop a unified language interface for computer vision tasks that abstracts away task-specific design choices.
Our model, dubbed InstructCV, performs competitively compared to other generalist and task-specific vision models.
arXiv Detail & Related papers (2023-09-30T14:26:43Z) - Multi-Task Self-Supervised Learning for Image Segmentation Task [0.0]
The paper presents 1. Self-supervised techniques to boost semantic segmentation performance using multi-task learning with Depth prediction and Surface Normalization.
2. Performance evaluation of the different types of weighing techniques (UW, Nash-MTL) used for Multi-task learning.
arXiv Detail & Related papers (2023-02-05T21:25:59Z) - Image Semantic Relation Generation [0.76146285961466]
Scene graphs can distil complex image information and correct the bias of visual models using semantic-level relations.
In this work, we introduce image semantic relation generation (ISRG), a simple but effective image-to-text model.
arXiv Detail & Related papers (2022-10-19T16:15:19Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - UFO: A UniFied TransfOrmer for Vision-Language Representation Learning [54.82482779792115]
We propose a single UniFied transfOrmer (UFO) capable of processing either unimodal inputs (e.g., image or language) or multimodal inputs (e.g., the concatenation of the image and the question) for vision-language (VL) representation learning.
Existing approaches typically design an individual network for each modality and/or a specific fusion network for multimodal tasks.
arXiv Detail & Related papers (2021-11-19T03:23:10Z) - Dual Graph Convolutional Networks with Transformer and Curriculum
Learning for Image Captioning [26.496357517937614]
Existing image captioning methods just focus on understanding the relationship between objects or instances in a single image.
We propose Dual Graph Convolutional Networks (Dual-GCN) with transformer and curriculum learning for image captioning.
arXiv Detail & Related papers (2021-08-05T04:57:06Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
We leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps.
A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss.
We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme.
arXiv Detail & Related papers (2021-02-11T10:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.