論文の概要: Closing the Gap in the Trade-off between Fair Representations and Accuracy
- arxiv url: http://arxiv.org/abs/2404.09664v1
- Date: Mon, 15 Apr 2024 10:54:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 12:40:28.465492
- Title: Closing the Gap in the Trade-off between Fair Representations and Accuracy
- Title(参考訳): 公正表現と正確性の間のトレードオフにおけるギャップの閉鎖
- Authors: Biswajit Rout, Ananya B. Sai, Arun Rajkumar,
- Abstract要約: 埋め込みレベルのバイアスに対して、文書や文(エンコーディング)の自然言語表現を分析する。
これらのエンコーディングにおけるバイアスは、再構成エラーの差に基づいて、異なるサブグループに対して、または、異なるサブグループに対して、特定する。
我々は、エンコーディングにおけるそのようなバイアスを軽減する方法を探り、推奨すると同時に、それらを使用する分類モデルにおいて適切な精度を維持する。
- 参考スコア(独自算出の注目度): 7.69097171839838
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid developments of various machine learning models and their deployments in several applications has led to discussions around the importance of looking beyond the accuracies of these models. Fairness of such models is one such aspect that is deservedly gaining more attention. In this work, we analyse the natural language representations of documents and sentences (i.e., encodings) for any embedding-level bias that could potentially also affect the fairness of the downstream tasks that rely on them. We identify bias in these encodings either towards or against different sub-groups based on the difference in their reconstruction errors along various subsets of principal components. We explore and recommend ways to mitigate such bias in the encodings while also maintaining a decent accuracy in classification models that use them.
- Abstract(参考訳): さまざまな機械学習モデルの急速な開発と、いくつかのアプリケーションへの展開により、これらのモデルの精度を超えることの重要性が議論されている。
このようなモデルの公平さは、より多くの注目を集める価値のある側面である。
本研究では、文書や文の自然言語表現(エンコーディング)を埋め込みレベルのバイアスに対して分析し、それらに依存する下流タスクの公平性に影響を与える可能性がある。
これらのエンコーディングにおけるバイアスは、主成分の様々な部分集合に沿った再構成誤差の違いに基づいて、異なるサブグループに対して、あるいは、異なるサブグループに対して、特定する。
我々は、エンコーディングにおけるそのようなバイアスを軽減する方法を探り、推奨すると同時に、それらを使用する分類モデルにおいて適切な精度を維持する。
関連論文リスト
- Collapsed Language Models Promote Fairness [88.48232731113306]
偏りのある言語モデルはトークン表現と単語埋め込みの間に崩壊したアライメントを示す。
我々は,幅広い脱バイアス法において,公平性を効果的に向上する原理的な微調整法を設計する。
論文 参考訳(メタデータ) (2024-10-06T13:09:48Z) - Images Speak Louder than Words: Understanding and Mitigating Bias in Vision-Language Model from a Causal Mediation Perspective [13.486497323758226]
広範囲なデータセットで事前訓練された視覚言語モデルは、性情報とオブジェクトやシナリオを関連付けることによって、必然的にバイアスを学習することができる。
本稿では,因果媒介分析を取り入れた枠組みを提案し,バイアス発生と伝播の経路を計測・マッピングする。
論文 参考訳(メタデータ) (2024-07-03T05:19:45Z) - Enhancing Robustness of Foundation Model Representations under
Provenance-related Distribution Shifts [8.298173603769063]
分布シフト下における基礎モデルに基づくモデルの安定性について検討する。
我々は,多施設データセットの文脈に現れる分布シフトの形式である,証明によるコンバウンディングに焦点をあてる。
その結果, 基礎モデルでは, コンバウンド・バイ・プロビデンス関係の分布シフトに対して, ある程度の頑健性を示すが, 調整により改善できることがわかった。
論文 参考訳(メタデータ) (2023-12-09T02:02:45Z) - Model Debiasing via Gradient-based Explanation on Representation [14.673988027271388]
本稿では,デリケートな属性やプロキシな属性に関して,デバイアスを行う新しいフェアネスフレームワークを提案する。
我々のフレームワークは、過去の最先端のアプローチよりも、構造化されていないデータセットと構造化されたデータセットの公平性と正確なトレードオフを達成しています。
論文 参考訳(メタデータ) (2023-05-20T11:57:57Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - On the Interpretability of Attention Networks [1.299941371793082]
注意モデルがどのように正確かを示すが、解釈できないことを示し、そのようなモデルがトレーニングの結果として発生することを示す。
空間性を促進するために設計されたいくつかの注意モデル学習アルゴリズムを評価し、これらのアルゴリズムが解釈可能性を向上させることを実証する。
論文 参考訳(メタデータ) (2022-12-30T15:31:22Z) - A Multi-dimensional Evaluation of Tokenizer-free Multilingual Pretrained
Models [87.7086269902562]
サブワードベースのモデルは、多くの設定において依然として最も実用的な選択肢であることを示している。
我々は,新しいモデルを設計し,評価する際のこれらの要因を検討するために,トークンフリーな手法の今後の取り組みを奨励する。
論文 参考訳(メタデータ) (2022-10-13T15:47:09Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Improving Robustness by Augmenting Training Sentences with
Predicate-Argument Structures [62.562760228942054]
データセットバイアスに対するロバスト性を改善する既存のアプローチは、主にトレーニング目標の変更に焦点を当てている。
本稿では,学習データ中の入力文に対応する述語句構造を付加することを提案する。
特定のバイアスを対象とせずに、文の増大は、複数のバイアスに対してトランスフォーマーモデルの堅牢性を向上することを示す。
論文 参考訳(メタデータ) (2020-10-23T16:22:05Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。