Unveiling Imitation Learning: Exploring the Impact of Data Falsity to Large Language Model
- URL: http://arxiv.org/abs/2404.09717v1
- Date: Mon, 15 Apr 2024 12:20:09 GMT
- Title: Unveiling Imitation Learning: Exploring the Impact of Data Falsity to Large Language Model
- Authors: Hyunsoo Cho,
- Abstract summary: This paper explores the correlation between the degree of noise and its impact on language models through instruction tuning.
Specifically, we found multiple intriguing findings of the correlation between the factuality of the dataset and instruction tuning.
- Score: 6.097530398802087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many recent studies endeavor to improve open-source language models through imitation learning, and re-training on the synthetic instruction data from state-of-the-art proprietary models like ChatGPT and GPT-4. However, the innate nature of synthetic data inherently contains noisy data, giving rise to a substantial presence of low-quality data replete with erroneous responses, and flawed reasoning. Although we intuitively grasp the potential harm of noisy data, we lack a quantitative understanding of its impact. To this end, this paper explores the correlation between the degree of noise and its impact on language models through instruction tuning. We first introduce the Falsity-Controllable (FACO) dataset, which comprises pairs of true answers with corresponding reasoning, as well as false pairs to manually control the falsity ratio of the dataset.Through our extensive experiments, we found multiple intriguing findings of the correlation between the factuality of the dataset and instruction tuning: Specifically, we verified falsity of the instruction is highly relevant to various benchmark scores. Moreover, when LLMs are trained with false instructions, they learn to lie and generate fake unfaithful answers, even though they know the correct answer for the user request. Additionally, we noted that once the language model is trained with a dataset contaminated by noise, restoring its original performance is possible, but it failed to reach full performance.
Related papers
- How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Entity-level Factual Adaptiveness of Fine-tuning based Abstractive
Summarization Models [31.84120883461332]
We analyze the robustness of fine-tuning based summarization models to the knowledge conflict.
We introduce a controllable counterfactual data augmentation method.
arXiv Detail & Related papers (2024-02-23T07:53:39Z) - Influence Scores at Scale for Efficient Language Data Sampling [3.072340427031969]
"influence scores" are used to identify important subsets of data.
In this paper, we explore the applicability of influence scores in language classification tasks.
arXiv Detail & Related papers (2023-11-27T20:19:22Z) - Measuring and Improving Attentiveness to Partial Inputs with Counterfactuals [91.59906995214209]
We propose a new evaluation method, Counterfactual Attentiveness Test (CAT)
CAT uses counterfactuals by replacing part of the input with its counterpart from a different example, expecting an attentive model to change its prediction.
We show that GPT3 becomes less attentive with an increased number of demonstrations, while its accuracy on the test data improves.
arXiv Detail & Related papers (2023-11-16T06:27:35Z) - On-the-fly Denoising for Data Augmentation in Natural Language
Understanding [101.46848743193358]
We propose an on-the-fly denoising technique for data augmentation that learns from soft augmented labels provided by an organic teacher model trained on the cleaner original data.
Our method can be applied to general augmentation techniques and consistently improve the performance on both text classification and question-answering tasks.
arXiv Detail & Related papers (2022-12-20T18:58:33Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z) - NLI Data Sanity Check: Assessing the Effect of Data Corruption on Model
Performance [3.7024660695776066]
We propose a new diagnostics test suite which allows to assess whether a dataset constitutes a good testbed for evaluating the models' meaning understanding capabilities.
We specifically apply controlled corruption transformations to widely used benchmarks (MNLI and ANLI)
A large decrease in model accuracy indicates that the original dataset provides a proper challenge to the models' reasoning capabilities.
arXiv Detail & Related papers (2021-04-10T12:28:07Z) - Annotating and Modeling Fine-grained Factuality in Summarization [36.88018450067003]
A major barrier to their use in practice is their propensity to output summaries that are not faithful to the input and that contain factual errors.
We explore both synthetic and human-labeled data sources for training models to identify factual errors in summarization.
We show that our best factuality detection model enables training of more factual XSum summarization models by allowing us to identify non-factual tokens in the training data.
arXiv Detail & Related papers (2021-04-09T11:20:44Z) - Improving Commonsense Causal Reasoning by Adversarial Training and Data
Augmentation [14.92157586545743]
This paper presents a number of techniques for making models more robust in the domain of causal reasoning.
We show a statistically significant improvement on performance and on both datasets, even with only a small number of additionally generated data points.
arXiv Detail & Related papers (2021-01-13T09:55:29Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
Training of spoken language understanding (SLU) models often faces the problem of data scarcity.
We put forward a data augmentation method using pretrained language models to boost the variability and accuracy of generated utterances.
arXiv Detail & Related papers (2020-04-29T04:07:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.