論文の概要: Privacy-Preserving Federated Unlearning with Certified Client Removal
- arxiv url: http://arxiv.org/abs/2404.09724v1
- Date: Mon, 15 Apr 2024 12:27:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 13:38:59.009192
- Title: Privacy-Preserving Federated Unlearning with Certified Client Removal
- Title(参考訳): 認証クライアント除去によるプライバシ保護型フェデレーション・アンラーニング
- Authors: Ziyao Liu, Huanyi Ye, Yu Jiang, Jiyuan Shen, Jiale Guo, Ivan Tjuawinata, Kwok-Yan Lam,
- Abstract要約: 未学習の最先端の方法は、勾配や局所的に訓練されたモデルなど、FLクライアントからの履歴データを使用する。
本稿では,二要素計算(Two-Party Computation, 2PC)技術を用いたプライバシー保護フェデレーション・アンラーニング手法であるStarfishを提案する。
- 参考スコア(独自算出の注目度): 18.36632825624581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Federated Unlearning (FU) has gained attention for addressing the removal of a client's influence from the global model in Federated Learning (FL) systems, thereby ensuring the ``right to be forgotten" (RTBF). State-of-the-art methods for unlearning use historical data from FL clients, such as gradients or locally trained models. However, studies have revealed significant information leakage in this setting, with the possibility of reconstructing a user's local data from their uploaded information. Addressing this, we propose Starfish, a privacy-preserving federated unlearning scheme using Two-Party Computation (2PC) techniques and shared historical client data between two non-colluding servers. Starfish builds upon existing FU methods to ensure privacy in unlearning processes. To enhance the efficiency of privacy-preserving FU evaluations, we suggest 2PC-friendly alternatives for certain FU algorithm operations. We also implement strategies to reduce costs associated with 2PC operations and lessen cumulative approximation errors. Moreover, we establish a theoretical bound for the difference between the unlearned global model via Starfish and a global model retrained from scratch for certified client removal. Our theoretical and experimental analyses demonstrate that Starfish achieves effective unlearning with reasonable efficiency, maintaining privacy and security in FL systems.
- Abstract(参考訳): 近年、フェデレーテッド・アンラーニング(FU)は、クライアントの影響力を、フェデレーテッド・ラーニング(FL)システムにおけるグローバルモデルから排除し、「忘れられる権利」(RTBF)を確保することで注目されている。
未学習の最先端の方法は、勾配や局所的に訓練されたモデルなど、FLクライアントからの履歴データを使用する。
しかし,この環境では,アップロードした情報からユーザのローカルデータを再構築する可能性があり,重大な情報漏洩が報告されている。
そこで本研究では,二要素計算(Two-Party Computation, 2PC)技術を用いたプライバシ保護フェデレーション付きアンラーニングスキームであるStarfishを提案する。
Starfishは、未学習プロセスのプライバシを確保するために、既存のFUメソッドの上に構築されている。
プライバシ保存型FU評価の効率を高めるために,特定のFUアルゴリズム操作に対して2PCフレンドリな代替案を提案する。
また,2PC操作に伴うコスト削減と累積近似誤差の低減を図る戦略を実装した。
さらに、Starfishによる未学習のグローバルモデルと、認証されたクライアント削除のためにゼロから再訓練されたグローバルモデルとの差に対する理論的境界を確立する。
我々の理論的および実験的分析は、FLシステムにおけるプライバシーとセキュリティを維持しながら、合理的な効率で効果的な未学習を実現することを実証している。
関連論文リスト
- Efficient Federated Unlearning with Adaptive Differential Privacy Preservation [15.8083997286637]
フェデレーション・アンラーニング(FU)は、フェデレーション・ラーニング(FL)における、特定のクライアントのデータがグローバルモデルに与える影響を消し去るための有望なソリューションを提供する。
現在の最先端のFUメソッドは、保存された履歴更新を活用することで、従来のFLフレームワークを拡張している。
FUにおける効率性とプライバシ保護の両立を図ったFedADPを提案する。
論文 参考訳(メタデータ) (2024-11-17T11:45:15Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Federated Unlearning for Human Activity Recognition [11.287645073129108]
本稿では,クライアントのトレーニングデータの一部を選択的に除去することで,FL HARモデルを洗練するための軽量マシンアンラーニング手法を提案する。
本手法は,テキストリトレーニング手法に匹敵する非学習精度を実現し,数十~数千の高速化を実現する。
論文 参考訳(メタデータ) (2024-01-17T15:51:36Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - FedPDD: A Privacy-preserving Double Distillation Framework for
Cross-silo Federated Recommendation [4.467445574103374]
クロスプラットフォームレコメンデーションは、さまざまなプラットフォームから異種機能を集めることで、レコメンデーションの精度を向上させることを目的としている。
このようなプラットフォーム間のクロスサイロなコラボレーションは、ますます厳しいプライバシー保護規制によって制限される。
クロスサイロ・フェデレーション・レコメンデーションのための新しいプライバシー保護型二重蒸留フレームワークであるFedPDDを提案する。
論文 参考訳(メタデータ) (2023-05-09T16:17:04Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Federated Unlearning with Knowledge Distillation [9.666514931140707]
フェデレートラーニング(FL)は、トレーニングプロセス中に各クライアントのデータプライバシを保護するように設計されている。
忘れられる権利に関する最近の法律では、FLモデルが各クライアントから学んだことを忘れる能力を持つことが不可欠である。
モデルから蓄積した履歴更新を減じることで,クライアントの貢献を解消する,新たなフェデレーション付きアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-01-24T03:56:20Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - WAFFLE: Weighted Averaging for Personalized Federated Learning [38.241216472571786]
WAFFLEは、SCAFFOLDに基づくパーソナライズされた協調機械学習アルゴリズムである。
WAFFLEは、クライアントのアップデート間のユークリッド距離を使用して、個々のコントリビューションを計測する。
本実験では, WAFFLE の有効性を他の方法と比較した。
論文 参考訳(メタデータ) (2021-10-13T18:40:54Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。