Contrastive Pretraining for Visual Concept Explanations of Socioeconomic Outcomes
- URL: http://arxiv.org/abs/2404.09768v2
- Date: Thu, 13 Jun 2024 14:00:24 GMT
- Title: Contrastive Pretraining for Visual Concept Explanations of Socioeconomic Outcomes
- Authors: Ivica Obadic, Alex Levering, Lars Pennig, Dario Oliveira, Diego Marcos, Xiaoxiang Zhu,
- Abstract summary: Post-hoc concept-based explanations can be an important step towards broader adoption of these models in policy-making.
We study the interplay between representation learning using an additional task-specific contrastive loss and post-hoc concept explainability for socioeconomic studies.
- Score: 15.842647992041751
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting socioeconomic indicators from satellite imagery with deep learning has become an increasingly popular research direction. Post-hoc concept-based explanations can be an important step towards broader adoption of these models in policy-making as they enable the interpretation of socioeconomic outcomes based on visual concepts that are intuitive to humans. In this paper, we study the interplay between representation learning using an additional task-specific contrastive loss and post-hoc concept explainability for socioeconomic studies. Our results on two different geographical locations and tasks indicate that the task-specific pretraining imposes a continuous ordering of the latent space embeddings according to the socioeconomic outcomes. This improves the model's interpretability as it enables the latent space of the model to associate concepts encoding typical urban and natural area patterns with continuous intervals of socioeconomic outcomes. Further, we illustrate how analyzing the model's conceptual sensitivity for the intervals of socioeconomic outcomes can shed light on new insights for urban studies.
Related papers
- Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
Learning concepts from natural high-dimensional data holds potential in building human-aligned and interpretable machine learning models.
We formalize concepts as discrete latent causal variables that are related via a hierarchical causal model.
We substantiate our theoretical claims with synthetic data experiments.
arXiv Detail & Related papers (2024-06-01T18:01:03Z) - Understanding Inter-Concept Relationships in Concept-Based Models [12.229150338065828]
We analyse concept representations learnt by concept-based models to understand whether these models correctly capture inter-concept relationships.
First, we empirically demonstrate that state-of-the-art concept-based models produce representations that lack stability and robustness, and such methods fail to capture inter-concept relationships.
Then, we develop a novel algorithm which leverages inter-concept relationships to improve concept intervention accuracy.
arXiv Detail & Related papers (2024-05-28T14:20:49Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPT aims to infuse conceptual knowledge into pre-trained language models.
It exploits external entity concept prediction to predict the concepts of entities mentioned in the pre-training contexts.
Results of experiments show that ConcEPT gains improved conceptual knowledge with concept-enhanced pre-training.
arXiv Detail & Related papers (2024-01-11T05:05:01Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Knowledge-infused Contrastive Learning for Urban Imagery-based
Socioeconomic Prediction [13.26632316765164]
Urban imagery in web like satellite/street view images has emerged as an important source for socioeconomic prediction.
We propose a Knowledge-infused Contrastive Learning model for urban imagery-based socioeconomic prediction.
Our proposed KnowCL model can apply to both satellite and street imagery with both effectiveness and transferability achieved.
arXiv Detail & Related papers (2023-02-25T14:53:17Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - Is Disentanglement all you need? Comparing Concept-based &
Disentanglement Approaches [24.786152654589067]
We give an overview of concept-based explanations and disentanglement approaches.
We show that state-of-the-art approaches from both classes can be data inefficient, sensitive to the specific nature of the classification/regression task, or sensitive to the employed concept representation.
arXiv Detail & Related papers (2021-04-14T15:06:34Z) - Debiasing Concept-based Explanations with Causal Analysis [4.911435444514558]
We study the problem of the concepts being correlated with confounding information in the features.
We propose a new causal prior graph for modeling the impacts of unobserved variables.
We show that our debiasing method works when the concepts are not complete.
arXiv Detail & Related papers (2020-07-22T15:42:46Z) - Socioeconomic correlations of urban patterns inferred from aerial
images: interpreting activation maps of Convolutional Neural Networks [0.10152838128195464]
Urbanisation is a great challenge for modern societies, promising better access to economic opportunities while widening socioeconomic inequalities.
Here we close this gap by predicting socioeconomic status across France from aerial images and interpreting class activation mappings in terms of urban topology.
These results pave the way to build interpretable models, which may help to better track and understand urbanisation and its consequences.
arXiv Detail & Related papers (2020-04-10T04:57:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.