Understanding Inter-Concept Relationships in Concept-Based Models
- URL: http://arxiv.org/abs/2405.18217v1
- Date: Tue, 28 May 2024 14:20:49 GMT
- Title: Understanding Inter-Concept Relationships in Concept-Based Models
- Authors: Naveen Raman, Mateo Espinosa Zarlenga, Mateja Jamnik,
- Abstract summary: We analyse concept representations learnt by concept-based models to understand whether these models correctly capture inter-concept relationships.
First, we empirically demonstrate that state-of-the-art concept-based models produce representations that lack stability and robustness, and such methods fail to capture inter-concept relationships.
Then, we develop a novel algorithm which leverages inter-concept relationships to improve concept intervention accuracy.
- Score: 12.229150338065828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concept-based explainability methods provide insight into deep learning systems by constructing explanations using human-understandable concepts. While the literature on human reasoning demonstrates that we exploit relationships between concepts when solving tasks, it is unclear whether concept-based methods incorporate the rich structure of inter-concept relationships. We analyse the concept representations learnt by concept-based models to understand whether these models correctly capture inter-concept relationships. First, we empirically demonstrate that state-of-the-art concept-based models produce representations that lack stability and robustness, and such methods fail to capture inter-concept relationships. Then, we develop a novel algorithm which leverages inter-concept relationships to improve concept intervention accuracy, demonstrating how correctly capturing inter-concept relationships can improve downstream tasks.
Related papers
- Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - A Self-explaining Neural Architecture for Generalizable Concept Learning [29.932706137805713]
We show that present SOTA concept learning approaches suffer from two major problems - lack of concept fidelity and limited concept interoperability.
We propose a novel self-explaining architecture for concept learning across domains.
We demonstrate the efficacy of our proposed approach over current SOTA concept learning approaches on four widely used real-world datasets.
arXiv Detail & Related papers (2024-05-01T06:50:18Z) - Knowledge graphs for empirical concept retrieval [1.06378109904813]
Concept-based explainable AI is promising as a tool to improve the understanding of complex models at the premises of a given user.
Here, we present a workflow for user-driven data collection in both text and image domains.
We test the retrieved concept datasets on two concept-based explainability methods, namely concept activation vectors (CAVs) and concept activation regions (CARs)
arXiv Detail & Related papers (2024-04-10T13:47:22Z) - A survey on Concept-based Approaches For Model Improvement [2.1516043775965565]
Concepts are known to be the thinking ground of humans.
We provide a systematic review and taxonomy of various concept representations and their discovery algorithms in Deep Neural Networks (DNNs)
We also provide details on concept-based model improvement literature marking the first comprehensive survey of these methods.
arXiv Detail & Related papers (2024-03-21T17:09:20Z) - Learning Interpretable Concepts: Unifying Causal Representation Learning
and Foundation Models [51.43538150982291]
We study how to learn human-interpretable concepts from data.
Weaving together ideas from both fields, we show that concepts can be provably recovered from diverse data.
arXiv Detail & Related papers (2024-02-14T15:23:59Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPT aims to infuse conceptual knowledge into pre-trained language models.
It exploits external entity concept prediction to predict the concepts of entities mentioned in the pre-training contexts.
Results of experiments show that ConcEPT gains improved conceptual knowledge with concept-enhanced pre-training.
arXiv Detail & Related papers (2024-01-11T05:05:01Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks.
Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training.
This work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations.
arXiv Detail & Related papers (2024-01-09T16:16:16Z) - Interpretable Neural-Symbolic Concept Reasoning [7.1904050674791185]
Concept-based models aim to address this issue by learning tasks based on a set of human-understandable concepts.
We propose the Deep Concept Reasoner (DCR), the first interpretable concept-based model that builds upon concept embeddings.
arXiv Detail & Related papers (2023-04-27T09:58:15Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
Concept Activation Vector (CAV) relies on learning a linear relation between some latent representation of a given model and concepts.
We proposed Concept Gradient (CG), extending concept-based interpretation beyond linear concept functions.
We demonstrated CG outperforms CAV in both toy examples and real world datasets.
arXiv Detail & Related papers (2022-08-31T17:06:46Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
We introduce concept explanations including the class of Concept Activation Vectors (CAV)
We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats.
Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.
arXiv Detail & Related papers (2022-02-25T01:27:31Z) - Interpretable Visual Reasoning via Induced Symbolic Space [75.95241948390472]
We study the problem of concept induction in visual reasoning, i.e., identifying concepts and their hierarchical relationships from question-answer pairs associated with images.
We first design a new framework named object-centric compositional attention model (OCCAM) to perform the visual reasoning task with object-level visual features.
We then come up with a method to induce concepts of objects and relations using clues from the attention patterns between objects' visual features and question words.
arXiv Detail & Related papers (2020-11-23T18:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.