Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations
- URL: http://arxiv.org/abs/2404.09788v1
- Date: Mon, 15 Apr 2024 13:44:01 GMT
- Title: Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations
- Authors: Krzysztof Kacprzyk, Mihaela van der Schaar,
- Abstract summary: Generalized Additive Models (GAMs) can capture non-linear relationships between variables and targets, but they cannot capture intricate feature interactions.
We propose Shape Expressions Arithmetic ( SHAREs) that fuses GAM's flexible shape functions with the complex feature interactions found in mathematical expressions.
We also design a set of rules for constructing SHAREs that guarantee transparency of the found expressions beyond the standard constraints.
- Score: 56.78271181959529
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Symbolic regression has excelled in uncovering equations from physics, chemistry, biology, and related disciplines. However, its effectiveness becomes less certain when applied to experimental data lacking inherent closed-form expressions. Empirically derived relationships, such as entire stress-strain curves, may defy concise closed-form representation, compelling us to explore more adaptive modeling approaches that balance flexibility with interpretability. In our pursuit, we turn to Generalized Additive Models (GAMs), a widely used class of models known for their versatility across various domains. Although GAMs can capture non-linear relationships between variables and targets, they cannot capture intricate feature interactions. In this work, we investigate both of these challenges and propose a novel class of models, Shape Arithmetic Expressions (SHAREs), that fuses GAM's flexible shape functions with the complex feature interactions found in mathematical expressions. SHAREs also provide a unifying framework for both of these approaches. We also design a set of rules for constructing SHAREs that guarantee transparency of the found expressions beyond the standard constraints based on the model's size.
Related papers
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.
Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.
Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
arXiv Detail & Related papers (2025-01-30T18:36:48Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
This work extends the reach of generative models into physical problem domains.
We present an efficient approach to promote consistency with the underlying PDE.
We showcase the potential and versatility of score-based generative models in various physics tasks.
arXiv Detail & Related papers (2023-12-16T19:56:10Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Multi-Response Heteroscedastic Gaussian Process Models and Their
Inference [1.52292571922932]
We propose a novel framework for the modeling of heteroscedastic covariance functions.
We employ variational inference to approximate the posterior and facilitate posterior predictive modeling.
We show that our proposed framework offers a robust and versatile tool for a wide array of applications.
arXiv Detail & Related papers (2023-08-29T15:06:47Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - High-Dimensional Undirected Graphical Models for Arbitrary Mixed Data [2.2871867623460207]
In many applications data span variables of different types, whose principled joint analysis is nontrivial.
Recent advances have shown how the binary-continuous case can be tackled, but the general mixed variable type regime remains challenging.
We propose flexible and scalable methodology for data with variables of entirely general mixed type.
arXiv Detail & Related papers (2022-11-21T18:21:31Z) - Approximate Latent Force Model Inference [1.3927943269211591]
latent force models offer an interpretable alternative to purely data driven tools for inference in dynamical systems.
We show that a neural operator approach can scale our model to thousands of instances, enabling fast, distributed computation.
arXiv Detail & Related papers (2021-09-24T09:55:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.