No-Regret Algorithms in non-Truthful Auctions with Budget and ROI Constraints
- URL: http://arxiv.org/abs/2404.09832v1
- Date: Mon, 15 Apr 2024 14:31:53 GMT
- Title: No-Regret Algorithms in non-Truthful Auctions with Budget and ROI Constraints
- Authors: Gagan Aggarwal, Giannis Fikioris, Mingfei Zhao,
- Abstract summary: We study the problem of designing online autobidding algorithms to optimize value subject to ROI and budget constraints.
Our main result is an algorithm with full information feedback that guarantees a near-optimal $tilde O(sqrt T)$ regret with respect to the best Lipschitz function.
- Score: 0.9694940903078658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advertisers increasingly use automated bidding to optimize their ad campaigns on online advertising platforms. Autobidding optimizes an advertiser's objective subject to various constraints, e.g. average ROI and budget constraints. In this paper, we study the problem of designing online autobidding algorithms to optimize value subject to ROI and budget constraints when the platform is running any mixture of first and second price auction. We consider the following stochastic setting: There is an item for sale in each of $T$ rounds. In each round, buyers submit bids and an auction is run to sell the item. We focus on one buyer, possibly with budget and ROI constraints. We assume that the buyer's value and the highest competing bid are drawn i.i.d. from some unknown (joint) distribution in each round. We design a low-regret bidding algorithm that satisfies the buyer's constraints. Our benchmark is the objective value achievable by the best possible Lipschitz function that maps values to bids, which is rich enough to best respond to many different correlation structures between value and highest competing bid. Our main result is an algorithm with full information feedback that guarantees a near-optimal $\tilde O(\sqrt T)$ regret with respect to the best Lipschitz function. Our result applies to a wide range of auctions, most notably any mixture of first and second price auctions (price is a convex combination of the first and second price). In addition, our result holds for both value-maximizing buyers and quasi-linear utility-maximizing buyers. We also study the bandit setting, where we show an $\Omega(T^{2/3})$ lower bound on the regret for first-price auctions, showing a large disparity between the full information and bandit settings. We also design an algorithm with $\tilde O(T^{3/4})$ regret, when the value distribution is known and is independent of the highest competing bid.
Related papers
- Procurement Auctions via Approximately Optimal Submodular Optimization [53.93943270902349]
We study procurement auctions, where an auctioneer seeks to acquire services from strategic sellers with private costs.
Our goal is to design computationally efficient auctions that maximize the difference between the quality of the acquired services and the total cost of the sellers.
arXiv Detail & Related papers (2024-11-20T18:06:55Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Online Learning in Contextual Second-Price Pay-Per-Click Auctions [47.06746975822902]
We study online learning in contextual pay-per-click auctions where at each of the $T$ rounds, the learner receives some context along with a set of ads.
The learner's goal is to minimize her regret, defined as the gap between her total revenue and that of an oracle strategy.
arXiv Detail & Related papers (2023-10-08T07:04:22Z) - Learning and Collusion in Multi-unit Auctions [17.727436775513368]
We consider repeated multi-unit auctions with uniform pricing.
We analyze the properties of this auction in both the offline and online settings.
We show that the $(K+1)$-st price format is susceptible to collusion among the bidders.
arXiv Detail & Related papers (2023-05-27T08:00:49Z) - Dynamic Pricing and Learning with Bayesian Persuasion [18.59029578133633]
We consider a novel dynamic pricing and learning setting where in addition to setting prices of products, the seller also ex-ante commits to 'advertising schemes'
We use the popular Bayesian persuasion framework to model the effect of these signals on the buyers' valuation and purchase responses.
We design an online algorithm that can use past purchase responses to adaptively learn the optimal pricing and advertising strategy.
arXiv Detail & Related papers (2023-04-27T17:52:06Z) - Autobidders with Budget and ROI Constraints: Efficiency, Regret, and Pacing Dynamics [53.62091043347035]
We study a game between autobidding algorithms that compete in an online advertising platform.
We propose a gradient-based learning algorithm that is guaranteed to satisfy all constraints and achieves vanishing individual regret.
arXiv Detail & Related papers (2023-01-30T21:59:30Z) - A Reinforcement Learning Approach in Multi-Phase Second-Price Auction
Design [158.0041488194202]
We study reserve price optimization in multi-phase second price auctions.
From the seller's perspective, we need to efficiently explore the environment in the presence of potentially nontruthful bidders.
Third, the seller's per-step revenue is unknown, nonlinear, and cannot even be directly observed from the environment.
arXiv Detail & Related papers (2022-10-19T03:49:05Z) - Fast Rate Learning in Stochastic First Price Bidding [0.0]
First-price auctions have largely replaced traditional bidding approaches based on Vickrey auctions in programmatic advertising.
We show how to achieve significantly lower regret when the opponents' maximal bid distribution is known.
Our algorithms converge much faster than alternatives proposed in the literature for various bid distributions.
arXiv Detail & Related papers (2021-07-05T07:48:52Z) - Near-Optimal Regret Bounds for Contextual Combinatorial Semi-Bandits
with Linear Payoff Functions [53.77572276969548]
We show that the C$2$UCB algorithm has the optimal regret bound $tildeO(dsqrtkT + dk)$ for the partition matroid constraints.
For general constraints, we propose an algorithm that modifies the reward estimates of arms in the C$2$UCB algorithm.
arXiv Detail & Related papers (2021-01-20T04:29:18Z) - Learning to Bid Optimally and Efficiently in Adversarial First-price
Auctions [40.30925727499806]
We develop the first minimax optimal online bidding algorithm that achieves an $widetildeO(sqrtT)$ regret.
We test our algorithm on three real-world first-price auction datasets obtained from Verizon Media.
arXiv Detail & Related papers (2020-07-09T05:40:39Z) - Optimal No-regret Learning in Repeated First-price Auctions [38.908235632001116]
We study online learning in repeated first-price auctions.
We develop the first learning algorithm that achieves a near-optimal $widetildeO(sqrtT)$ regret bound.
arXiv Detail & Related papers (2020-03-22T03:32:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.