Procurement Auctions via Approximately Optimal Submodular Optimization
- URL: http://arxiv.org/abs/2411.13513v1
- Date: Wed, 20 Nov 2024 18:06:55 GMT
- Title: Procurement Auctions via Approximately Optimal Submodular Optimization
- Authors: Yuan Deng, Amin Karbasi, Vahab Mirrokni, Renato Paes Leme, Grigoris Velegkas, Song Zuo,
- Abstract summary: We study procurement auctions, where an auctioneer seeks to acquire services from strategic sellers with private costs.
Our goal is to design computationally efficient auctions that maximize the difference between the quality of the acquired services and the total cost of the sellers.
- Score: 53.93943270902349
- License:
- Abstract: We study procurement auctions, where an auctioneer seeks to acquire services from strategic sellers with private costs. The quality of services is measured by a submodular function known to the auctioneer. Our goal is to design computationally efficient procurement auctions that (approximately) maximize the difference between the quality of the acquired services and the total cost of the sellers, while ensuring incentive compatibility (IC), individual rationality (IR) for sellers, and non-negative surplus (NAS) for the auctioneer. Our contributions are twofold: (i) we provide an improved analysis of existing algorithms for non-positive submodular function maximization, and (ii) we design efficient frameworks that transform submodular optimization algorithms into mechanisms that are IC, IR, NAS, and approximation-preserving. These frameworks apply to both the offline setting, where all sellers' bids and services are available simultaneously, and the online setting, where sellers arrive in an adversarial order, requiring the auctioneer to make irrevocable decisions. We also explore whether state-of-the-art submodular optimization algorithms can be converted into descending auctions in adversarial settings, where the schedule of descending prices is determined by an adversary. We show that a submodular optimization algorithm satisfying bi-criteria $(1/2, 1)$-approximation in welfare can be effectively adapted to a descending auction. Additionally, we establish a connection between descending auctions and online submodular optimization. Finally, we demonstrate the practical applications of our frameworks by instantiating them with state-of-the-art submodular optimization algorithms and empirically comparing their welfare performance on publicly available datasets with thousands of sellers.
Related papers
- Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models [54.381650481255235]
We introduce a new tuning-free approach for self-alignment, Dynamic Rewarding with Prompt Optimization (O)
Our approach leverages a search-based optimization framework that allows LLMs to iteratively self-improve and craft the optimal alignment instructions.
Empirical evaluations on eight recent LLMs, both open and closed-sourced, demonstrate that DRPO significantly enhances alignment performance.
arXiv Detail & Related papers (2024-11-13T16:15:38Z) - Fair Allocation in Dynamic Mechanism Design [57.66441610380448]
We consider a problem where an auctioneer sells an indivisible good to groups of buyers in every round, for a total of $T$ rounds.
The auctioneer aims to maximize their discounted overall revenue while adhering to a fairness constraint that guarantees a minimum average allocation for each group.
arXiv Detail & Related papers (2024-05-31T19:26:05Z) - Coordinated Dynamic Bidding in Repeated Second-Price Auctions with
Budgets [17.937079224726073]
We study coordinated online bidding algorithms in repeated second-price auctions with budgets.
We propose algorithms that guarantee every client a higher utility than the best she can get under independent bidding.
arXiv Detail & Related papers (2023-06-13T11:55:04Z) - Autobidders with Budget and ROI Constraints: Efficiency, Regret, and Pacing Dynamics [53.62091043347035]
We study a game between autobidding algorithms that compete in an online advertising platform.
We propose a gradient-based learning algorithm that is guaranteed to satisfy all constraints and achieves vanishing individual regret.
arXiv Detail & Related papers (2023-01-30T21:59:30Z) - Neural Auction: End-to-End Learning of Auction Mechanisms for E-Commerce
Advertising [42.7415188090209]
We develop deep models to efficiently extract contexts from auctions, providing rich features for auction design.
DNAs have been successfully deployed in the e-commerce advertising system at Taobao.
arXiv Detail & Related papers (2021-06-07T13:20:40Z) - Optimizing Multiple Performance Metrics with Deep GSP Auctions for
E-commerce Advertising [28.343122250701498]
In e-commerce advertising, the ad platform usually relies on auction mechanisms to optimize different performance metrics, such as user experience, advertiser utility, and platform revenue.
We propose a new mechanism called Deep GSP auction, which leverages deep learning to design new rank score functions within the celebrated GSP auction framework.
arXiv Detail & Related papers (2020-12-05T02:51:11Z) - Efficient Algorithms for Stochastic Repeated Second-price Auctions [0.0]
We develop efficient sequential bidding strategies for repeated auctions.
We provide the first parametric lower bound for this problem.
We propose more explainable strategies which are reminiscent of the Explore Then Commit bandit algorithm.
arXiv Detail & Related papers (2020-11-10T12:45:02Z) - Learning to Bid Optimally and Efficiently in Adversarial First-price
Auctions [40.30925727499806]
We develop the first minimax optimal online bidding algorithm that achieves an $widetildeO(sqrtT)$ regret.
We test our algorithm on three real-world first-price auction datasets obtained from Verizon Media.
arXiv Detail & Related papers (2020-07-09T05:40:39Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
We formulate the sequential advertising strategy optimization as a dynamic knapsack problem.
We propose a theoretically guaranteed bilevel optimization framework, which significantly reduces the solution space of the original optimization space.
To improve the exploration efficiency of reinforcement learning, we also devise an effective action space reduction approach.
arXiv Detail & Related papers (2020-06-29T18:50:35Z) - VCG Mechanism Design with Unknown Agent Values under Stochastic Bandit
Feedback [104.06766271716774]
We study a multi-round welfare-maximising mechanism design problem in instances where agents do not know their values.
We first define three notions of regret for the welfare, the individual utilities of each agent and that of the mechanism.
Our framework also provides flexibility to control the pricing scheme so as to trade-off between the agent and seller regrets.
arXiv Detail & Related papers (2020-04-19T18:00:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.