Progressive Knowledge Graph Completion
- URL: http://arxiv.org/abs/2404.09897v1
- Date: Mon, 15 Apr 2024 16:16:59 GMT
- Title: Progressive Knowledge Graph Completion
- Authors: Jiayi Li, Ruilin Luo, Jiaqi Sun, Jing Xiao, Yujiu Yang,
- Abstract summary: Knowledge Graph Completion (KGC) has emerged as a promising solution to address the issue of incompleteness within Knowledge Graphs (KGs)
Traditional KGC research primarily centers on triple classification and link prediction.
This paper introduces the Progressive Knowledge Graph Completion task, which simulates the gradual completion of KGs in real-world scenarios.
- Score: 35.464878766786576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Graph Completion (KGC) has emerged as a promising solution to address the issue of incompleteness within Knowledge Graphs (KGs). Traditional KGC research primarily centers on triple classification and link prediction. Nevertheless, we contend that these tasks do not align well with real-world scenarios and merely serve as surrogate benchmarks. In this paper, we investigate three crucial processes relevant to real-world construction scenarios: (a) the verification process, which arises from the necessity and limitations of human verifiers; (b) the mining process, which identifies the most promising candidates for verification; and (c) the training process, which harnesses verified data for subsequent utilization; in order to achieve a transition toward more realistic challenges. By integrating these three processes, we introduce the Progressive Knowledge Graph Completion (PKGC) task, which simulates the gradual completion of KGs in real-world scenarios. Furthermore, to expedite PKGC processing, we propose two acceleration modules: Optimized Top-$k$ algorithm and Semantic Validity Filter. These modules significantly enhance the efficiency of the mining procedure. Our experiments demonstrate that performance in link prediction does not accurately reflect performance in PKGC. A more in-depth analysis reveals the key factors influencing the results and provides potential directions for future research.
Related papers
- WISE: Unraveling Business Process Metrics with Domain Knowledge [0.0]
Anomalies in complex industrial processes are often obscured by high variability and complexity of event data.
We introduce WISE, a novel method for analyzing business process metrics through the integration of domain knowledge, process mining, and machine learning.
We show that WISE enhances automation in business process analysis and effectively detects deviations from desired process flows.
arXiv Detail & Related papers (2024-10-06T07:57:08Z) - Transformers Utilization in Chart Understanding: A Review of Recent Advances & Future Trends [1.124958340749622]
This paper reviews prominent research in Understanding (CU)
It focuses on State-of-The-Art (SoTA) frameworks that employ transformers within End-to-End (E2E) solutions.
This article identifies key challenges and outlines promising future directions for advancing CU solutions.
arXiv Detail & Related papers (2024-10-05T16:26:44Z) - Overcoming Pitfalls in Graph Contrastive Learning Evaluation: Toward
Comprehensive Benchmarks [60.82579717007963]
We introduce an enhanced evaluation framework designed to more accurately gauge the effectiveness, consistency, and overall capability of Graph Contrastive Learning (GCL) methods.
arXiv Detail & Related papers (2024-02-24T01:47:56Z) - Modeling of learning curves with applications to pos tagging [0.27624021966289597]
We introduce an algorithm to estimate the evolution of learning curves on the whole of a training data base.
We approximate iteratively the sought value at the desired time, independently of the learning technique used.
The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition.
arXiv Detail & Related papers (2024-02-04T15:00:52Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
From Theory to Practice [54.03076395748459]
A central question in the meta-learning literature is how to regularize to ensure generalization to unseen tasks.
We present a generalization bound for meta-learning, which was first derived by Rothfuss et al.
We provide a theoretical analysis and empirical case study under which conditions and to what extent these guarantees for meta-learning improve upon PAC-Bayesian per-task learning bounds.
arXiv Detail & Related papers (2022-11-14T08:51:04Z) - Tackling Oversmoothing of GNNs with Contrastive Learning [35.88575306925201]
Graph neural networks (GNNs) integrate the comprehensive relation of graph data and representation learning capability.
Oversmoothing makes the final representations of nodes indiscriminative, thus deteriorating the node classification and link prediction performance.
We propose the Topology-guided Graph Contrastive Layer, named TGCL, which is the first de-oversmoothing method maintaining all three mentioned metrics.
arXiv Detail & Related papers (2021-10-26T15:56:16Z) - Sample and Computation Redistribution for Efficient Face Detection [137.19388513633484]
Training data sampling and computation distribution strategies are the keys to efficient and accurate face detection.
scrfdf34 outperforms the best competitor, TinaFace, by $3.86%$ (AP at hard set) while being more than emph3$times$ faster on GPUs with VGA-resolution images.
arXiv Detail & Related papers (2021-05-10T23:51:14Z) - Highly Efficient Knowledge Graph Embedding Learning with Orthogonal
Procrustes Analysis [10.154836127889487]
Knowledge Graph Embeddings (KGEs) have been intensively explored in recent years due to their promise for a wide range of applications.
This paper proposes a simple yet effective KGE framework which can reduce the training time and carbon footprint by orders of magnitudes.
arXiv Detail & Related papers (2021-04-10T03:55:45Z) - Towards High Performance Human Keypoint Detection [87.1034745775229]
We find that context information plays an important role in reasoning human body configuration and invisible keypoints.
Inspired by this, we propose a cascaded context mixer ( CCM) which efficiently integrates spatial and channel context information.
To maximize CCM's representation capability, we develop a hard-negative person detection mining strategy and a joint-training strategy.
We present several sub-pixel refinement techniques for postprocessing keypoint predictions to improve detection accuracy.
arXiv Detail & Related papers (2020-02-03T02:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.