EasyControl: Transfer ControlNet to Video Diffusion for Controllable Generation and Interpolation
- URL: http://arxiv.org/abs/2408.13005v2
- Date: Mon, 16 Sep 2024 15:56:34 GMT
- Title: EasyControl: Transfer ControlNet to Video Diffusion for Controllable Generation and Interpolation
- Authors: Cong Wang, Jiaxi Gu, Panwen Hu, Haoyu Zhao, Yuanfan Guo, Jianhua Han, Hang Xu, Xiaodan Liang,
- Abstract summary: We propose a universal framework called EasyControl for video generation.
Our method enables users to control video generation with a single condition map.
Our model demonstrates powerful image retention ability, resulting in high FVD and IS in UCF101 and MSR-VTT.
- Score: 73.80275802696815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Following the advancements in text-guided image generation technology exemplified by Stable Diffusion, video generation is gaining increased attention in the academic community. However, relying solely on text guidance for video generation has serious limitations, as videos contain much richer content than images, especially in terms of motion. This information can hardly be adequately described with plain text. Fortunately, in computer vision, various visual representations can serve as additional control signals to guide generation. With the help of these signals, video generation can be controlled in finer detail, allowing for greater flexibility for different applications. Integrating various controls, however, is nontrivial. In this paper, we propose a universal framework called EasyControl. By propagating and injecting condition features through condition adapters, our method enables users to control video generation with a single condition map. With our framework, various conditions including raw pixels, depth, HED, etc., can be integrated into different Unet-based pre-trained video diffusion models at a low practical cost. We conduct comprehensive experiments on public datasets, and both quantitative and qualitative results indicate that our method outperforms state-of-the-art methods. EasyControl significantly improves various evaluation metrics across multiple validation datasets compared to previous works. Specifically, for the sketch-to-video generation task, EasyControl achieves an improvement of 152.0 on FVD and 19.9 on IS, respectively, in UCF101 compared with VideoComposer. For fidelity, our model demonstrates powerful image retention ability, resulting in high FVD and IS in UCF101 and MSR-VTT compared to other image-to-video models.
Related papers
- AID: Adapting Image2Video Diffusion Models for Instruction-guided Video Prediction [88.70116693750452]
Text-guided video prediction (TVP) involves predicting the motion of future frames from the initial frame according to an instruction.
Previous TVP methods make significant breakthroughs by adapting Stable Diffusion for this task.
We introduce the Multi-Modal Large Language Model (MLLM) to predict future video states based on initial frames and text instructions.
arXiv Detail & Related papers (2024-06-10T17:02:08Z) - Moonshot: Towards Controllable Video Generation and Editing with
Multimodal Conditions [94.03133100056372]
Moonshot is a new video generation model that conditions simultaneously on multimodal inputs of image and text.
Model can be easily repurposed for a variety of generative applications, such as personalized video generation, image animation and video editing.
arXiv Detail & Related papers (2024-01-03T16:43:47Z) - Fine-grained Controllable Video Generation via Object Appearance and
Context [74.23066823064575]
We propose fine-grained controllable video generation (FACTOR) to achieve detailed control.
FACTOR aims to control objects' appearances and context, including their location and category.
Our method achieves controllability of object appearances without finetuning, which reduces the per-subject optimization efforts for the users.
arXiv Detail & Related papers (2023-12-05T17:47:33Z) - DreamVideo: High-Fidelity Image-to-Video Generation with Image Retention and Text Guidance [69.0740091741732]
We propose a high-fidelity image-to-video generation method by devising a frame retention branch based on a pre-trained video diffusion model, named DreamVideo.
Our model has a powerful image retention ability and delivers the best results in UCF101 compared to other image-to-video models to our best knowledge.
arXiv Detail & Related papers (2023-12-05T03:16:31Z) - LAMP: Learn A Motion Pattern for Few-Shot-Based Video Generation [44.220329202024494]
We present a few-shot-based tuning framework, LAMP, which enables text-to-image diffusion model Learn A specific Motion Pattern with 816 videos on a single GPU.
Specifically, we design a first-frame-conditioned pipeline that uses an off-the-shelf text-to-image model for content generation.
To capture the features of temporal dimension, we expand the pretrained 2D convolution layers of the T2I model to our novel temporal-spatial motion learning layers.
arXiv Detail & Related papers (2023-10-16T19:03:19Z) - Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Reward Feedback Learning [50.60891619269651]
Control-A-Video is a controllable T2V diffusion model that can generate videos conditioned on text prompts and reference control maps like edge and depth maps.
We propose novel strategies to incorporate content prior and motion prior into the diffusion-based generation process.
Our framework generates higher-quality, more consistent videos compared to existing state-of-the-art methods in controllable text-to-video generation.
arXiv Detail & Related papers (2023-05-23T09:03:19Z) - TiVGAN: Text to Image to Video Generation with Step-by-Step Evolutionary
Generator [34.7504057664375]
We propose a novel training framework, Text-to-Image-to-Video Generative Adversarial Network (TiVGAN), which evolves frame-by-frame and finally produces a full-length video.
Step-by-step learning process helps stabilize the training and enables the creation of high-resolution video based on conditional text descriptions.
arXiv Detail & Related papers (2020-09-04T06:33:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.